![دانلود پایان نامه داده کاوی وکاربرد آن درتشخیص بیماری ها (دیابت)](../prod-images/167652.jpg)
دانلود پایان نامه داده کاوی وکاربرد آن درتشخیص بیماری ها (دیابت)
تعداد صفحات 85 صفحه
دانلود پایان نامه داده کاوی وکاربرد آن درتشخیص بیماری ها (دیابت)
دانلود پایان نامه داده کاوی وکاربرد آن درتشخیص بیماری ها (دیابت)
تعداد صفحات 85 صفحه
فهرست :
مقدمه
فصل دوم: داده کاوی
مقدمه ای بر داده کاوی
چه چیزی سبب پیدایش داده کاوی شده است؟
مراحل کشف دانش
جایگاه داده کاوی در میان علوم مختلف
داده کاوی چه کارهایی نمی تواند انجام دهد؟
داده کاوی و انبار داده ها
داده کاوی و OLAP
کاربرد یادگیری ماشین و آمار در داده کاوی
توصیف داده ها در داده کاوی
خلاصه سازی و به تصویر در آوردن داده ها
خوشه بندی
تحلیل لینک
مدل های پیش بینی داده ها
دسته بندی
رگرسیون
سری های زمانی
مدل ها و الگوریتم های داده کاوی
شبکه های عصبی
درخت تصمیم
Multivariate Adaptive Regression Splines(MARS)
Rule induction
Knearest neibour and memorybased reansoning(MBR)
رگرسیون منطقی
تحلیل تفکیکی
مدل افزودنی کلی (GAM)
Boosting
سلسله مراتب انتخابها
داده کاوی و مدیریت بهینه وب سایت ها
دادهکاوی و مدیریت دانش
فصل سوم: وب کاوی
تعریف وب کاوی
مراحل وب کاوی
وب کاوی و زمینه های تحقیقاتی مرتبط
وب کاوی و داده کاوی
وب کاوی و بازیابی اطلاعات
وب کاوی و استخراج اطلاعات
وب کاوی و یادگیری ماشین
انواع وب کاوی
چالش های وب کاوی
مشکلات ومحدودیت های وب کاوی در سایت های فارسی زبان
محتوا کاوی وب
فصل چهارم: وب کاوی در صنعت
انواع وب کاوی در صنعت
وب کاوی در صنعت نفت، گاز و پتروشیمی
مهندسی مخازن/ اکتشاف
مهندسی بهره برداری
مهندسی حفاری
بخشهای مدیریتی
کاربرد های دانش داده کاوی در صنعت بیمه
کاربردهای دانش داده کاوی در مدیریت شهری
کاربردهای داده کاوی در صنعت بانکداری
بخش بندی مشتریان
پژوهش های کاربردی
نتیجه گیری
منابع و ماخذ فارسی
مراجع و ماخذ لاتین و سایتهای اینترنتی
شرح مختصر : داده های مورد استفاده در این پروژه از پایگاه داده دانشگاه آزاد قزوین تهیه شده است، این داده ها اطلاعات ۵۰۰ نفر دانشجوی مقطع کارشناسی رشته مهندسی صنایع (گرایش های تکنولوژی صنعتی و تولید صنعتی) است. که در قالب یک فایل اکسل با ۳۸۳۷۷ رکورد می باشد و سنوات تحصیلی ۱۳۸۴ تا ۱۳۹۰ را شامل می شود. مدلی که برای پیشبینی ارتقاء سطح علمی دانشجویان بر اساس اطلاعات موجود در پایگاه داده دانشگاه آزاد قزوین پیشنهاد میشود در زیر شرح داده میشود : در این مدل پیشنهادی مراحل مختلف فرآیند داده کاوی از جمله جمع آوری دادهها، آماده سازی و پیش پردازش داده ها را روی مجموعه آموزشی ذکر شده انجام داده و الگوریتمهای مختلف داده کاوی از جمله خوشه بندی، قوانین انجمنی، درخت تصمیمگیری، برای دادهها به کار گرفته شده است. ابتدا برای عملکرد بهتر الگوریتمهای داده کاوی یک سری عملیات پیشپردازشی روی دادهها انجام داده شده است. همچنین بعد از تجمیع دادهها داخل یک فایل خصیصههای عددی به خصیصه های گروهی معادل تبدیل شده است. برای مثال تمام نمرات دانشجویان به پنج گروه عالی، خوب، متوسط، ضعیف و مردود تقسیم بندی شده است.
تعداد صفحات : 80
فرمت فایل : Word , pdf
ایمنى ترافیک از مباحث مهم در حمل و نقل و از اولویت هاى مهم سازمان هاى دخیل در این حوزه است. تقاطع ها به دلیل شرایط هندسى، محیطى و ساختارى نقاطى کلیدی در حادثه خیزی مسیرها هستند. این تحقیق به بررسى روش هاى مکان-مبناى مورد استفاده جهت تحلیل تصادفات جاده اى در تقاطع ها مى پردازد. در این حوزه، GIS به دلیل توانایی انجام آنالیزهاى سودمند مکانى نقش اى را ایفا مى کند. تصمیم گیری صحیح با هدف سرمایه گذارى در امور زیر بنایى به مجموعه بزرگى از داده ها به ویژه داده هاى مکانى نیاز دارد و از آنجا که حجم این داده ها با گذشت زمان به سرعت افزایش مى یا بد، تحلیل و استخراج اطلاعات مفید از آن ها بدون استفاده از ابزار هاى پیشرفته تحلیل داده ها مشکل می باشد. داده کاوى مکانى تکنیکى نوظهور در تجزیه و تحلیل داده هاى مکانى و مکان - محور می باشد که به دلیل افزایش قابلیت جمع آورى و ذخیره سازى این نوع داده مورد توجه قرار گرفته است. در این مقاله دو تکنیک رایج در داده کاوى مکانى به نام هاى درخت تصمیم و شبکه عصبى مصنوعى در تحلیل تصادفات جاده اى در تقاطع ها مورد بررسى و مطالعه قرار مى گیرد. نتایج این پژوهش نشان مى دهد که گر چه شبکه هاى عصبى سابقأ کاربرد بیشترى در تحلیل هاى تصادفات جاده اى دارند، اما عملکرد درخت تصمیم به مشدهدات میدانى نزدیک تر می باشد.
سال انتشار: 1392
تعداد صفحات: 14
فرمت فایل: pdf
داده های مورد استفاده در این پروژه از پایگاه داده دانشگاه آزاد قزوین تهیه شده است، این داده ها اطلاعات ۵۰۰ نفر دانشجوی مقطع کارشناسی رشته مهندسی صنایع (گرایش های تکنولوژی صنعتی و تولید صنعتی) است. که در قالب یک فایل اکسل با ۳۸۳۷۷ رکورد می باشد و سنوات تحصیلی ۱۳۸۴ تا ۱۳۹۰ را شامل می شود. مدلی که برای پیشبینی ارتقاء سطح علمی دانشجویان بر اساس اطلاعات موجود در پایگاه داده دانشگاه آزاد قزوین پیشنهاد میشود در زیر شرح داده میشود : در این مدل پیشنهادی مراحل مختلف فرآیند داده کاوی از جمله جمع آوری دادهها، آماده سازی و پیش پردازش داده ها را روی مجموعه آموزشی ذکر شده انجام داده و الگوریتمهای مختلف داده کاوی از جمله خوشه بندی، قوانین انجمنی، درخت تصمیمگیری، برای دادهها به کار گرفته شده است. ابتدا برای عملکرد بهتر الگوریتمهای داده کاوی یک سری عملیات پیشپردازشی روی دادهها انجام داده شده است. همچنین بعد از تجمیع دادهها داخل یک فایل خصیصههای عددی به خصیصه های گروهی معادل تبدیل شده است. برای مثال تمام نمرات دانشجویان به پنج گروه عالی، خوب، متوسط، ضعیف و مردود تقسیم بندی شده است.
کلمات کلیدی :
مقدمه ای بر داده کاوی
مقدمه ای بر نرم افزار Weka
شرح دیتاست پروژه
اعمال تکنیک درخت تصمیم بروی داده ها
قانون ها
اعمال تکنیک شبکه عصبی بروی داده ها
خروجی شبکه عصبی
اعمال تکنیک خوشه بندی بر وی داده ها
معرفی نرم افزار Weka
آموزش نرم افزار weka
انتخاب الگوریتم رده بندی
انتخاب الگوریتم خوشه بندی
فرمت : PDF - Word
صفحه :41