فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله کامل درباره اجزای ترانسفورماتور

اختصاصی از فی لوو دانلود مقاله کامل درباره اجزای ترانسفورماتور دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره اجزای ترانسفورماتور


دانلود مقاله کامل درباره اجزای ترانسفورماتور

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :87

 

بخشی از متن مقاله

اجزای ترانسفور ماتور

با اصول مقدماتی و ساختمان ترانسفورماتورها باید توجه داشته باشید که به علت تلفات و مسائل اقتصادی و عوامل دیگر که در طراحی و ساختمان ترانسفورماتور هاموثرند، نمی توان به سادگی از فرمول هایی که تا بهحال ارائه شده است برای ساختمان ترانسفورماتور استفاده کرد . بنابراین ، در این جا به بررسی ساختمان و محاسبه ی عملی ترانسفورماتورها ی کوچک می پردازیم .

لازم به تذکر است که ترانسفورماتور ها را با توجه به کاربرد و خصوصیات آنها بهسه دسته کوچک ، متوسط و بزرگ دسته بندی می کنند .

ساختمان ترانسفورماتور  های بزرگ و متوسط به دلیل مسائل حفاظتی و عایق بندی و امکانان موجود ، کار ساده ای نیست . لذا دراین جا ما فقط ترانسفورماتورهای کوچک ( تا قدرت 16 کیلو ولت آمپر تا 1000 ولت ) را بررسی خواهیم کرد .

موارد استفاده ی این ترانسفورماتورها امروز بسیار زیاد است ؛ مثلاً در یک سو سازها ، مصرف کننده های کم قدرت که به ولتاژ کم وصلمی شوند ، وسایل الکترونیکی ، اسباب بازی ها و ... از این ترانسفورماتورها استفاده می شود .

برایساختن ترانسفورماتورها ی کوچک ، اجزای آن مانند ورقه های آهن ، سیم و قرقره را به سادگی می توان تهیه کرد .

برای محاسبه و ساخت یک ترانسفورماتور می توان با استفاده از عوامل و روابط موجود ، مجهولات مطلوب را محاسبه کرد . علاوه بر این برای  ترانسفورماتورهای مشخص و استاهدارد شده نیز جداول یا منحنی هایی وجود دارد که به سادگی می توان از روی آن ها مجهولات را به دست آورد .

در این جا به بررسی هر یک از این روش ها برای ساختن یک ترانسفورماتور یکفاز می پردازیم .

اجزای تشکیل دهنده ی یک ترانسفورماتور به شرح  زیر است .

1- هسته ی ترانسفورماتور :

هسته ی ترانسفورماتور متشکل از ورقه های نازک است که سطح آن ها با توجه به قدرت ترانسفورماتور محاسبه می شود . برای کم کردن تلفات آهنی ، هسته ی ترانسفورماتور را نمی توان به طور یک پارچه ساخت . بلکه معمولا آن ها را از ورقه های نازک فلزی که نسبت به یک دیگر عایق اند ، می سازند .

این ورقه ها از آهن بدون مماسند ( ورق دیناموبلش ) با آلیاژی از سیلیسیم ( حداکثر 5/4 درصد ) که دارای قابلیت هدایت الکتریکی کم و قابلیتهدایت مغناطیسی زیاد است ساخته می شوند . در اثر زیاد شدن مقدار سیلیسیم ، ورقه های دیناموبلش شکننده  میشوند . برای عایق کردن ورقه های ترانسفورماتور ، قبلاً از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانیده می شد ، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد اینورقه ها یک لایه ی نازک اکسید ، فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آن ها می مالند و با آن روی ورقه ها را می پوشانند . علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود . ورقه های ترانسفورماتور دارای یکلایه عایق هستند ؛ بنابراین ، در موقع محاسبه یسطح مقطع هسته باید سطح آهن خالص را منظور کرد . ورقه های ترانسفورماتور را به ضخامت های 35/0 و 5/0 میلی متر و در اندازه های استاندارد به شکل های مختلف می سازند .

معمولی ترین ورقه های استاندارد شده به شکل های El و M هستند . این ورقهها به صورت یک تکه ساخته شده و دور ریز آن ها زیاد است . لذا از این فرم تا استاندارد 102M ( ارتفاع 102 میلی متر ) ساخته می شود . در ضمن ، این نوع ورقه ها دارای شکاف هوایی 3/0 ، 5/0 یا 2 میلی متر هستند .  ورقه های  ترانسفورماتور به فرم El را به علت دورریز کم تر برای استانداردهای  بالا نیز درست می کنند . این ورقه ها را باید در داخل قرقره به طور متناوب از دو طرف جا زد تا بدین ترتیب فاصله ی هوایی در نتیجه ، تلفات پراکندگی کم شود . باید دقت کرد که سطح عایق شده ی ورقه های ترانسفورماتور همگی در یک جهت باشند . علاوه بر این ، تاحد امکان نباید در داخل قرقره فضای خالی بماند . لازم است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آن ها نیز جلوگیری شود .

2- سیم پیچ ترانسفورماتور :

معمولا برای سیم پیچ اولیه و ثانویه ی ترانسفورماتور از هادی های مسی با عایق ( روپوش ) لاکی استفاده می کنند . این هادی ها با سطح مقطع گرد و در اندازه های استاندارد وجود دارند و با قطر مشخص می شوند . درترانسفورماتورهای پرقدرت از هادی های مسی که به صورت تسمه هستند ، استفاده می شود . ابعاد این گونه هادی ها نیز استاندارد است .

سیم پیچی ترانسفورماتور های کوچک بر روی قرقره در طبقات مختلف پیچیده می شود . در صورتی که ماکزیمم ولتاژ بین دو حلقه بیش از 25 ولت باشد  ، باید بین طبقات عایق قرار داد . بین سیم ها ی مجزا از یک دیگر – مثلاً سیم پیچی های اولیه و ثانویه – نیز حتماً باید عایق قرار گیرند . در روی آخرین لایه نیز باید نوار عایق پیچیده شود و مشخصات ترانسفورماتور بر روی این  لایه ثبت گردد . برای استفاده از حداکثر فضای قرقره ، سیم ها تا حد ممکن باید پهلوی یک دیگر پیچیده شوند و بین آنها فضای خالی نباشد . چگالی جریان که برای ترانسفورماتور های کوچک انتخاب می شود ، بین A/mm  1 تا A/mm 4 است . سر سیم پیچی ها را باید به وسیله ی روکش ها ی عایق ( وارنیش یا ماکارونی ) از سوراخ های قرقره خارج کرد تا بدین ترتیب سیم ها قطع ( خصوصاً در سیم های نازک و لایه های اول ) یا زخمی نشوند . یکطرف این روکش ها باید در داخل قرقره زیر سیم قرار گیرند و خوب محکم شوند . علاوه بر این ، بهتر است رنگ روکش ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، به راحتی بتوان سر هر سیم پیچ را مشخص کرد .

بعد از اتمام سیم پیچی یا تعمیر سیم پیچ های ترانسفورماتور باید آن ها را با ولتاژهای بالاتر از ولتاژ نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بین بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و هم چنین سیم پیچ اولیه و سیم پیچ ثانویه آزمایش کرد جدول 1 مقدار ولتاژ آزمایش را نشان می دهد .

3- قرقره ی ترانسفور ماتور :

برای حفاظت و نگهداری از سیم پیچ ها ی ترالنسفورماتور – خصوصاً در ترانسفور ماتور های کوچک – باید از قرقره استفاده کرد .

جنس قرقره باید از مواد عایق باشد . قرقره را معمولاً از کاغذ عایق سخت ( برش مان ) ، فیبر های استخوانی یا مواد ترموپلاست می سازند . قرقره هایی که از جنس ترموپلاستیک هستند معمولاً یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر باید آن ها را در چند قطعه ساخت و سپس بر روی یک دیگر سوار کرد .

بر روی دیوارهای قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ ها از آن ها خارج شوند . اندازه ی قرقره باید با اندازه  ی ورقه های ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود که از لبه  های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه های ترانسفورماتور ، لایه ی رویی سیم پیچ صدمه نبیند .

اندازه ی قرقره های ترانسفورماتور نیز استاندارد شده  است اما می توان در تمام موارد با توجه به نیاز ، قرقره ی مناسب را طراحی کرد و ساخت .

محاسبه ی عملی ترانسفور ماتور ها :

برای محاسبه و طراحی ترانسفورماتور ، به یک مجموعه معلومات اولیه نیازمندیم تا با استفاده از آن ، پارامترهای مجهول را محاسبه کنیم و ترانسفورماتور به دست می آیند که برای یک ترانسفورماتور کوچک عبارتند از :

  • .لتاژ اولیه U1 : ولتاژ منبع تغذیه (شبکه ) است و هدف از ساختن ترانسفورماتور ، تبدیل این ولتاژ به مقادیر کم تر یا بیش تر می باشد .
  • ولتاژ ثانویه U2 : ولتاژی است که هدف ما به دست آوردن آن است و مصرف کننده با این ولتاژ کار می کند .
  • جریان ثانویه I2 : جریانی است که از مصرف کننده ی مورد نظر عبور می کند .

برای مثال ، اگر بخواهیم یک مصرف کننده ی 12 ولت را که جریان دو آمپر باید از آن عبور کند به شبکه ی 220 ولت وصل کنیم ، باید از ترانسفورماتوری که در آن 220= 1U و 12=2U و A2=2I است ، استفاده کنیم .

برای ساختن و پیچیدن یک ترانسفورماتور به معلومات زیر نیاز داریم که باید محاسبه یا طراحی شوند :

  • محاسبه ی سطح مقطع هسته ی ترانسفورماتور .
  • تعداد دور سیم پیچ ها ی اولیه و ثانویه ی ترانسفورماتور .
  • قطر سیم های لاکی برای سیم پیچ اولیه و ثانویه ی ترانسفورماتور .
  • شماره ی استاندارد ورقه های ترانسفورماتور .
  • ابعاد و اندازه های اجزای تشکیلف دهنده ی قرقره ی ترانسفورماتور .

اکنون به محاسبه ی عملی پارامترهای بالا می پردازیم :

 محاسبه ی سطح مقطع هسته ی ترانسفورماتور :

برای محاسبه سطح مقطع هسته ی ترانسفورماتور می توان از فرمول                                 استفاده کرد . در این رابطه S سطح مقطع هسته بر حسب سانتی متر مربع و PS1  قدرت ظاهری اولیه ی ترانسفورماتور بر حسب ولت آمپر است . ضریب K به جنس هسته و نقطه کار ترانسفورماتور بستگی دارد و بین 8/. تا 2/1 است . برای ترانسفورماتورهای کوچک کم قدرت می توان 1=K یا 9/0=K را انتخاب کرد . بهتر است برای ترانسفورماتور های معمولی ضریب 2/1=K انتخاب شود

1PS  قدرت اولیه به قدرت ثانویه 2PS یعنی قدرت مورد نیاز بار بستگی دارد . در ترانسفورماتور های ایده آل 2P = 1P است اما در ترانسفورماتور های واقعی ، به علت تلفات کلی ترانسفورماتور همیشه 2PS    1PS وبازده (راندمان ) از یک کم تر است . معمولا قدرت ظاهری ترانسفورماتور بر حسب ولت آمپر (VA ) برای طرف  ثانویه مشخص می شود و می توان آن را از ضرب ولتاژ ثانویه در جریان ثانویه ( {VA } 2I × 2U = 2PS ) به دست می آورد .

قدرت اولیه را می توان با در نظر گرفتن بازده 95/0           75/0 از رابطه               = 1PS  حساب کرد . مقدار ضریب بهره      برای ترانسفورماتور ها از قدرت 25 تا 3500 ولت آمپر حدود 8/0 تا 9/0 انتخاب  می شود . برای ایجاد سطح مقطع S باید ورقه های ترانسفورماتور را در داخل قرقره پهلوی یک دیگر قرار داد . واضح است که به علت وجود لایه های نازک عایق در روی ورقه ها ، باید سطح مقطع بیش تری نسبت به سطح مقطع خالص در نظر گرفت .

به طوری که با کم شدن سطح اشغال شده توسط عایق های روی ورقه ، باقی مانده برابر با سطح آهن خالص باشد .

برای پیدا کردن مجموع آهن و عایق مورد نیاز SFe می توان از فرمول زیر که در آن             93/0 ......85/0 =KFe است ، استفاده کرد ؛ بنابراین

یعنی ، باید قرقره دارای سطح SFe برای جا زدن ورقه های ترانس باشد تا سطح آهن خالص برابر SFe شود . در محاسبه ی معمولی می توان مقدار KFe را برابر با 9/0 انتخاب کرد .

محاسبه ی تعداد دور اولیه و ثانویه ی ترانسفورماتور :

برای تعیین تعداد دور سیم پیچ اولیه و ثانویه ی یک ترالنسفورماتور می توان از روابط اصلی زیر استفاده کرد .

در این رابطه :

1U ولتاژ اولیه بر حسب ولت .

2U ولتاژ ثانویه بر حسب ولت .

1N تعداد دور اولیه .

2N تعداد دورز ثانویه .

BMax اندوکسیون بر حسب تسلا ( T ) .

SFe سطح مقطع آهن خالص بر حسب متر مربع ( m) .

Fفرکانس بر حسب هرتس (Hz ) است .

اگر اندوکسیون بر حسب گوس ( G) و سطح مقطع آهن خالص بر حسب سانتی متر مربع باشد ، چون G 10= T 1 و cm 10 =m 1 است ، بنابراین می توان از روابط زیر استفاده کرد :

برای محاسبه ی تعداد دورها ، بهتر است ابتدا تعداد دوری را که برای یک ولت نیروی محرکه لازم است به دست آوریم و از روی تعداد آن تعداد دورهای 1N و 2N را حساب کنیم . بدین منظور ، با قرار دادن {V } 1=U در رابطه ی قبلی می توان دور بر ولت را حساب کرد .

مقدار عددی اندوکسیون مغناطیسی BMax نیز به شدت میدان مغناطیسی و جنس ورقه ی ترانسفورماتور و آلیاژ آن ها بستگی دارد . برزای محاسبه ی ترانسفورماتور هایی که در آن ها از ورقه های معمولی ترانسفورماتور استفاده می شود ، می توان G 12000 =BMax را قرار داد .

برای فرکانس Hz 50 و G 12000 =BMax می توان رابطه ی دور بر ولت را به صورت ساده ی زیر خلاصه کرد .

مقدار دور بر ولت تابعی از سطح مقطع خالص هسته است . اگر افت ولتاژ ایجاد شده توسط مقاومت های اهمی و القایی سیم پیچ اولیه و ثانویه را منظور نکنیم ، می توانیم تعداد دور اولیه و ثانویه را از روابط زیر به دست آوریم :

1U ×n = 1N

2U ×n = 2N

 چون سیم پیچ های ترانسفورماتور دارای مقاومت هستند ، در اثر عبور جریان در هر یک از آن ها افت ولتاژی  متناسب با مقدار جریان به وجود می آید که باعث کاهش نیروی محرکه ی  القایی در اولیه ( ) و کاهش ولتاژ  در ثانویه ی ترانسفورماتور ـ  یعنی دو سر مصرف کننده (U2 < E2  )  می شود . چون ترانسفورماتور را بر مبنای ولتاژ شبکه و ولتاژ مصرف کننده طراحی می کنیم و می سازیم باید سعی شود ولتاژ خروجی در حالتی که جریان نامی از بار می گذرد ، درست به اندازه ی ولتاژ مورد نیاز مصرف کننده باشد . بنابراین ، لازم  است تعداد دور سیم پیچ اولیه و ثانویه را چنان انتخاب کنیم که  ولتاژ ثانویه ی ترانسفورماتور در حالت بی باری ، مقداری بیش تر از ولتاژ   مورد نیاز بار باشد . در این صورت ، هنگام وصل به بار ، ولتاژ خروجی برابر ولتاژ مورد نیاز مصرف کننده خواهد شد .

افت ولتاژ در ترانسفورماتور ، تابعی از قدرت ترانسفورماتور است که بر  حسب درصد ( ) داده شده است ، که می توان آن را به نسبت مساوی بین سیم پیچ های اولیه و ثانویه تقسیم کرد . با مشخص کردن درصد افت   ولتاژ ، می توان تعداد دور لازم برای اولیه و ثانویه را به روش زیر حساب کرد .

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره اجزای ترانسفورماتور

پاورپوینت با عنوان برج تقطیر و اجزای آن در 31 اسلاید

اختصاصی از فی لوو پاورپوینت با عنوان برج تقطیر و اجزای آن در 31 اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت با عنوان برج تقطیر و اجزای آن در 31 اسلاید


پاورپوینت با عنوان برج تقطیر و اجزای آن در 31 اسلاید

 

 

 

برج تقطیر(به انگلیسی: Distillation column یا fractionating column یا fractionation column) یکی از قسمت‌های اصلی و مهم در فرایند تقطیرآزمایشگاهی و صنعتی است. نوع صنعتی آن در ابعاد مختلف ساخته می‌شود و در صنایعی چون نفت و پتروشیمی و عمدتاً برای جداسازیهیدروکربن‌ها از یکدیگر به کار می‌رود. داخل برج‌های تقطیر صنعتی قسمت‌هایی به نام سینی‌های تقطیر قرار دارند که عمل جداسازی در آن‌ها انجام می‌شود و تعداد و روش چیدمان آن‌ها متناسب با نوع مواد جداشونده و ظرفیت تولید متفاوت است. نوع آزمایشگاهی آن معمولاً از جنس شیشه می‌باشد و برای مقادیر کم و یا نمونه‌های آزمایشی به کار می‌رود. برج تقطیر برش‌های مختلفی دارد کهاز نفت تتشکیل می‌شوند و پایین‌ترین برش ان نقطه جوش بالاتر دارد.

رجهای تقطیر سینی دار :

طرز کار یک برج سینی دار

بطور کلی فرآیندی که در یک برج سینی دار اتفاق می افتد، عمل جداسازی مواد است. همانطور که ذکر شد فرآیند مذکور به طور مستقیم یا عیرمستقیم انجام می پذیرد.

در فرآیند تقطیر منبع حرارتی (Reboiler)، حرارت لازم را جهت انجام عمل تقطیر و تفکیک مواد سازنده یک محلول تأمین میکند. بخار بالارونده از برج با مایعی که از بالای برج به سمت پایین حرکت می کند، بر روی سینی ها تماس مستقیم پیدا می کنند. این تماس باعث ازدیاد دمای مایع روی سینی شده و نهایتا باعث نزدیک شدن دمای مایع به دمای حباب می گردد. با رسیدن مایع به دمای حباب به تدریج اولین ذرات بخار حاصل می شود که این بخارات غنی از ماده فرار (ماده ای که از نقطه جوش کمتری و یا فشار بالاتری برخوردار است) می باشد.از طرفی دیگر در فاز بخار موادی که از نقطه جوش کمتری برخوردار هستند، تحت عمل میعان قرار گرفته و بصورت فاز مایع به سمت پایین برج حرکت می کند. مهمترین عملکرد یک برج ایجاد سطح تماس مناسب بین فازهای بخار و مایع است. هر چه سطح تماس افزایش یابد عمل تفکیک با راندمان بالاتری صورت میگیرد. البته رژیم جریان مایع بر روی سینی نیز از جمله عوامل مهم بر عملکرد یک برج تفکیک می باشد.

برجهای تقطیر با سینی کلاهکدار

در برجهای تقطیر با سینی کلاهکدار ، تعداد سینیها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینی‌ها به مقدار مایع و گاز که در واحد زمان از یک سینی می‌گذرد، وابسته است. هر یک از سینی‌های برج ، یک مرحله تفکیک است. زیرا روی این سینیها ، فاز گاز و مایع در کنار هم قرار می‌گیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینی‌ها انجام می‌شود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.

بخشهای مختلف برج تقطیر با سینی کلاهکدار

بدنه و سینیها: جنس بدنه معمولا از فولاد ریخته است. جنس سینی‌ها معمولا از چدن است. فاصله سینی‌ها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر می‌گزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4ft فاصله میان 50 - 18 سانتیمتر قرار می‌دهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینی‌ها در نظر گرفته می‌شود.

سرپوشها یا کلاهکها: جنس کلاهکها از چدن می‌باشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب می‌شود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.

موانع یا سدها: برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام "وییر" (wier) قرار می‌دهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینی‌ها بالا می‌رود.

برجهای تقطیر با سینی‌های مشبک

در برجهای با سینی مشبک ، اندازه مجراها یا شبکه‌ها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینیها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینیها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.

خورندگی فلز سینیها هم در این نوع سینیها اهمیت بسیار دارد. زیرا بر اثر خورندگی ، قطر سوراخها زیاد می‌شود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و می‌دانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.

برجهای تقطیر با سینی‌های دریچه‌ای

این نوع سینیها مانند سینیهای مشبک هستند. با این اختلاف که دریچه‌ای متحرک روی هر مجرا قرار گرفته است. در صنعت نفت ، دو نوع از این سینیها بکار می‌روند:

انعطاف پذیر: همانطور که از نام آن برمی‌آید، دریچه‌ها می‌توانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.

صفحات اضافی: در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار می‌گیرد و دیگری سنگین که بر روی سه پایه‌ای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در می‌آید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت می‌کنند.

مقایسه انواع گوناگون سینی‌ها

در صنعت نفت ، انواع گوناگون سینی‌ها در برجهای تقطیر ، تفکیک و جذب بکار برده می‌شوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار می‌گیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینی‌های کلاهکدار بکار برده می‌شوند، برای مقایسه مشخصات سینی‌های دیگر ، آنها را نسبت به سینی‌های کلاهکدار ارزیابی می‌کنند.

فهرست مطالب:

تقطیر

برج های تقطیر

انواع برج تقطیر

برج سینی دار

برج کلاهکی

یرج فورانی

برج دریچه ای 

برج مشبک

بویل یا جوش آور

دیگ های پوشش

جوش آور داخلی

چگالنده و نقش آن

تجهیزات جانبی

سیستم های کنترل

پمپ ها

مخازن

مخلوط ورودی برج

مشخصات مهم سینی خوراک

روش های وارد کردن خوراک

محصول بالاسری

محصول ته مانده

مواد انباشتی در برج

و...


دانلود با لینک مستقیم


پاورپوینت با عنوان برج تقطیر و اجزای آن در 31 اسلاید

دانلود مقاله کامل درباره اجزای ترانسفورماتور

اختصاصی از فی لوو دانلود مقاله کامل درباره اجزای ترانسفورماتور دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره اجزای ترانسفورماتور


دانلود مقاله کامل درباره اجزای ترانسفورماتور

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :87

 

بخشی از متن مقاله

اجزای ترانسفورماتور

با اصول مقدماتی و ساختمان ترانسفورماتورها باید توجه داشته باشید که به علت تلفات و مسائل اقتصادی و عوامل دیگر که در طراحی و ساختمان ترانسفورماتور هاموثرند، نمی توان به سادگی از فرمول هایی که تا بهحال ارائه شده است برای ساختمان ترانسفورماتور استفاده کرد . بنابراین ، در این جا به بررسی ساختمان و محاسبه ی عملی ترانسفورماتورها ی کوچک می پردازیم .

لازم به تذکر است که ترانسفورماتور ها را با توجه به کاربرد و خصوصیات آنها بهسه دسته کوچک ، متوسط و بزرگ دسته بندی می کنند .

ساختمان ترانسفورماتور  های بزرگ و متوسط به دلیل مسائل حفاظتی و عایق بندی و امکانان موجود ، کار ساده ای نیست . لذا دراین جا ما فقط ترانسفورماتورهای کوچک ( تا قدرت 16 کیلو ولت آمپر تا 1000 ولت ) را بررسی خواهیم کرد .

موارد استفاده ی این ترانسفورماتورها امروز بسیار زیاد است ؛ مثلاً در یک سو سازها ، مصرف کننده های کم قدرت که به ولتاژ کم وصلمی شوند ، وسایل الکترونیکی ، اسباب بازی ها و ... از این ترانسفورماتورها استفاده می شود .

برایساختن ترانسفورماتورها ی کوچک ، اجزای آن مانند ورقه های آهن ، سیم و قرقره را به سادگی می توان تهیه کرد .

برای محاسبه و ساخت یک ترانسفورماتور می توان با استفاده از عوامل و روابط موجود ، مجهولات مطلوب را محاسبه کرد . علاوه بر این برای  ترانسفورماتورهای مشخص و استاهدارد شده نیز جداول یا منحنی هایی وجود دارد که به سادگی می توان از روی آن ها مجهولات را به دست آورد .

در این جا به بررسی هر یک از این روش ها برای ساختن یک ترانسفورماتور یکفاز می پردازیم .

اجزای تشکیل دهنده ی یک ترانسفورماتور به شرح  زیر است .

1- هسته ی ترانسفورماتور :

هسته ی ترانسفورماتور متشکل از ورقه های نازک است که سطح آن ها با توجه به قدرت ترانسفورماتور محاسبه می شود . برای کم کردن تلفات آهنی ، هسته ی ترانسفورماتور را نمی توان به طور یک پارچه ساخت . بلکه معمولا آن ها را از ورقه های نازک فلزی که نسبت به یک دیگر عایق اند ، می سازند .

این ورقه ها از آهن بدون مماسند ( ورق دیناموبلش ) با آلیاژی از سیلیسیم ( حداکثر 5/4 درصد ) که دارای قابلیت هدایت الکتریکی کم و قابلیتهدایت مغناطیسی زیاد است ساخته می شوند . در اثر زیاد شدن مقدار سیلیسیم ، ورقه های دیناموبلش شکننده  میشوند . برای عایق کردن ورقه های ترانسفورماتور ، قبلاً از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانیده می شد ، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد اینورقه ها یک لایه ی نازک اکسید ، فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آن ها می مالند و با آن روی ورقه ها را می پوشانند . علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود . ورقه های ترانسفورماتور دارای یکلایه عایق هستند ؛ بنابراین ، در موقع محاسبه یسطح مقطع هسته باید سطح آهن خالص را منظور کرد . ورقه های ترانسفورماتور را به ضخامت های 35/0 و 5/0 میلی متر و در اندازه های استاندارد به شکل های مختلف می سازند .

معمولی ترین ورقه های استاندارد شده به شکل های El و M هستند . این ورقهها به صورت یک تکه ساخته شده و دور ریز آن ها زیاد است . لذا از این فرم تا استاندارد 102M ( ارتفاع 102 میلی متر ) ساخته می شود . در ضمن ، این نوع ورقه ها دارای شکاف هوایی 3/0 ، 5/0 یا 2 میلی متر هستند .  ورقه های  ترانسفورماتور به فرم El را به علت دورریز کم تر برای استانداردهای  بالا نیز درست می کنند . این ورقه ها را باید در داخل قرقره به طور متناوب از دو طرف جا زد تا بدین ترتیب فاصله ی هوایی در نتیجه ، تلفات پراکندگی کم شود . باید دقت کرد که سطح عایق شده ی ورقه های ترانسفورماتور همگی در یک جهت باشند . علاوه بر این ، تاحد امکان نباید در داخل قرقره فضای خالی بماند . لازم است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آن ها نیز جلوگیری شود .

2- سیم پیچ ترانسفورماتور :

معمولا برای سیم پیچ اولیه و ثانویه ی ترانسفورماتور از هادی های مسی با عایق ( روپوش ) لاکی استفاده می کنند . این هادی ها با سطح مقطع گرد و در اندازه های استاندارد وجود دارند و با قطر مشخص می شوند . درترانسفورماتورهای پرقدرت از هادی های مسی که به صورت تسمه هستند ، استفاده می شود . ابعاد این گونه هادی ها نیز استاندارد است .

سیم پیچی ترانسفورماتور های کوچک بر روی قرقره در طبقات مختلف پیچیده می شود . در صورتی که ماکزیمم ولتاژ بین دو حلقه بیش از 25 ولت باشد  ، باید بین طبقات عایق قرار داد . بین سیم ها ی مجزا از یک دیگر – مثلاً سیم پیچی های اولیه و ثانویه – نیز حتماً باید عایق قرار گیرند . در روی آخرین لایه نیز باید نوار عایق پیچیده شود و مشخصات ترانسفورماتور بر روی این  لایه ثبت گردد . برای استفاده از حداکثر فضای قرقره ، سیم ها تا حد ممکن باید پهلوی یک دیگر پیچیده شوند و بین آنها فضای خالی نباشد . چگالی جریان که برای ترانسفورماتور های کوچک انتخاب می شود ، بین A/mm  1 تا A/mm 4 است . سر سیم پیچی ها را باید به وسیله ی روکش ها ی عایق ( وارنیش یا ماکارونی ) از سوراخ های قرقره خارج کرد تا بدین ترتیب سیم ها قطع ( خصوصاً در سیم های نازک و لایه های اول ) یا زخمی نشوند . یکطرف این روکش ها باید در داخل قرقره زیر سیم قرار گیرند و خوب محکم شوند . علاوه بر این ، بهتر است رنگ روکش ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، به راحتی بتوان سر هر سیم پیچ را مشخص کرد .

بعد از اتمام سیم پیچی یا تعمیر سیم پیچ های ترانسفورماتور باید آن ها را با ولتاژهای بالاتر از ولتاژ نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بین بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و هم چنین سیم پیچ اولیه و سیم پیچ ثانویه آزمایش کرد جدول 1 مقدار ولتاژ آزمایش را نشان می دهد .

3-قرقره ی ترانسفورماتور :

برای حفاظت و نگهداری از سیم پیچ ها ی ترالنسفورماتور – خصوصاً در ترانسفور ماتور های کوچک – باید از قرقره استفاده کرد .

جنس قرقره باید از مواد عایق باشد . قرقره را معمولاً از کاغذ عایق سخت ( برش مان ) ، فیبر های استخوانی یا مواد ترموپلاست می سازند . قرقره هایی که از جنس ترموپلاستیک هستند معمولاً یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر باید آن ها را در چند قطعه ساخت و سپس بر روی یک دیگر سوار کرد .

بر روی دیوارهای قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ ها از آن ها خارج شوند . اندازه ی قرقره باید با اندازه  ی ورقه های ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود که از لبه  های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه های ترانسفورماتور ، لایه ی رویی سیم پیچ صدمه نبیند .

اندازه ی قرقره های ترانسفورماتور نیز استاندارد شده  است اما می توان در تمام موارد با توجه به نیاز ، قرقره ی مناسب را طراحی کرد و ساخت .

محاسبه ی عملی ترانسفور ماتور ها :

برای محاسبه و طراحی ترانسفورماتور ، به یک مجموعه معلومات اولیه نیازمندیم تا با استفاده از آن ، پارامترهای مجهول را محاسبه کنیم و ترانسفورماتور به دست می آیند که برای یک ترانسفورماتور کوچک عبارتند از :

  • .لتاژ اولیه U1 : ولتاژ منبع تغذیه (شبکه ) است و هدف از ساختن ترانسفورماتور ، تبدیل این ولتاژ به مقادیر کم تر یا بیش تر می باشد .
  • ولتاژ ثانویه U2 : ولتاژی است که هدف ما به دست آوردن آن است و مصرف کننده با این ولتاژ کار می کند .
  • جریان ثانویه I2 : جریانی است که از مصرف کننده ی مورد نظر عبور می کند .

برای مثال ، اگر بخواهیم یک مصرف کننده ی 12 ولت را که جریان دو آمپر باید از آن عبور کند به شبکه ی 220 ولت وصل کنیم ، باید از ترانسفورماتوری که در آن 220= 1U و 12=2U و A2=2I است ، استفاده کنیم .

برای ساختن و پیچیدن یک ترانسفورماتور به معلومات زیر نیاز داریم که باید محاسبه یا طراحی شوند :

  • محاسبه ی سطح مقطع هسته ی ترانسفورماتور .
  • تعداد دور سیم پیچ ها ی اولیه و ثانویه ی ترانسفورماتور .
  • قطر سیم های لاکی برای سیم پیچ اولیه و ثانویه ی ترانسفورماتور .
  • شماره ی استاندارد ورقه های ترانسفورماتور .
  • ابعاد و اندازه های اجزای تشکیلف دهنده ی قرقره ی ترانسفورماتور .

اکنون به محاسبه ی عملی پارامترهای بالا می پردازیم :

 محاسبه ی سطح مقطع هسته ی ترانسفورماتور :

برای محاسبه سطح مقطع هسته ی ترانسفورماتور می توان از فرمول                                 استفاده کرد . در این رابطه S سطح مقطع هسته بر حسب سانتی متر مربع و PS1  قدرت ظاهری اولیه ی ترانسفورماتور بر حسب ولت آمپر است . ضریب K به جنس هسته و نقطه کار ترانسفورماتور بستگی دارد و بین 8/. تا 2/1 است . برای ترانسفورماتورهای کوچک کم قدرت می توان 1=K یا 9/0=K را انتخاب کرد . بهتر است برای ترانسفورماتور های معمولی ضریب 2/1=K انتخاب شود

1PS  قدرت اولیه به قدرت ثانویه 2PS یعنی قدرت مورد نیاز بار بستگی دارد . در ترانسفورماتور های ایده آل 2P = 1P است اما در ترانسفورماتور های واقعی ، به علت تلفات کلی ترانسفورماتور همیشه 2PS    1PS وبازده (راندمان ) از یک کم تر است . معمولا قدرت ظاهری ترانسفورماتور بر حسب ولت آمپر (VA ) برای طرف  ثانویه مشخص می شود و می توان آن را از ضرب ولتاژ ثانویه در جریان ثانویه ( {VA } 2I × 2U = 2PS ) به دست می آورد .

قدرت اولیه را می توان با در نظر گرفتن بازده 95/0           75/0 از رابطه               = 1PS  حساب کرد . مقدار ضریب بهره      برای ترانسفورماتور ها از قدرت 25 تا 3500 ولت آمپر حدود 8/0 تا 9/0 انتخاب  می شود . برای ایجاد سطح مقطع S باید ورقه های ترانسفورماتور را در داخل قرقره پهلوی یک دیگر قرار داد . واضح است که به علت وجود لایه های نازک عایق در روی ورقه ها ، باید سطح مقطع بیش تری نسبت به سطح مقطع خالص در نظر گرفت .

به طوری که با کم شدن سطح اشغال شده توسط عایق های روی ورقه ، باقی مانده برابر با سطح آهن خالص باشد .

برای پیدا کردن مجموع آهن و عایق مورد نیاز SFe می توان از فرمول زیر که در آن  93/0 ......85/0 =KFe است ، استفاده کرد ؛ بنابراین

یعنی ، باید قرقره دارای سطح SFe برای جا زدن ورقه های ترانس باشد تا سطح آهن خالص برابر SFe شود . در محاسبه ی معمولی می توان مقدار KFe را برابر با 9/0 انتخاب کرد .

محاسبه ی تعداد دور اولیه و ثانویه ی ترانسفورماتور :

برای تعیین تعداد دور سیم پیچ اولیه و ثانویه ی یک ترالنسفورماتور می توان از روابط اصلی زیر استفاده کرد .

در این رابطه :

1U ولتاژ اولیه بر حسب ولت .

2U ولتاژ ثانویه بر حسب ولت .

1N تعداد دور اولیه .

2N تعداد دورز ثانویه .

BMax اندوکسیون بر حسب تسلا ( T ) .

SFe سطح مقطع آهن خالص بر حسب متر مربع ( m) .

Fفرکانس بر حسب هرتس (Hz ) است .

اگر اندوکسیون بر حسب گوس ( G) و سطح مقطع آهن خالص بر حسب سانتی متر مربع باشد ، چون G 10= T 1 و cm 10 =m 1 است ، بنابراین می توان از روابط زیر استفاده کرد :

برای محاسبه ی تعداد دورها ، بهتر است ابتدا تعداد دوری را که برای یک ولت نیروی محرکه لازم است به دست آوریم و از روی تعداد آن تعداد دورهای 1N و 2N را حساب کنیم . بدین منظور ، با قرار دادن {V } 1=U در رابطه ی قبلی می توان دور بر ولت را حساب کرد .

مقدار عددی اندوکسیون مغناطیسی BMax نیز به شدت میدان مغناطیسی و جنس ورقه ی ترانسفورماتور و آلیاژ آن ها بستگی دارد . برزای محاسبه ی ترانسفورماتور هایی که در آن ها از ورقه های معمولی ترانسفورماتور استفاده می شود ، می توان G 12000 =BMax را قرار داد .

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره اجزای ترانسفورماتور

تجزیه و تحلیل ساختارهای انعطاف پذیر خطی با استفاده از شیوة اجزای محدود (FEM)

اختصاصی از فی لوو تجزیه و تحلیل ساختارهای انعطاف پذیر خطی با استفاده از شیوة اجزای محدود (FEM) دانلود با لینک مستقیم و پر سرعت .

تجزیه و تحلیل ساختارهای انعطاف پذیر خطی با استفاده از شیوة اجزای محدود (FEM)


تجزیه و تحلیل ساختارهای انعطاف پذیر خطی با استفاده از شیوة اجزای محدود (FEM)

 

فرمت فایل : word(قابل ویرایش)تعداد صفحات40

-1- جایی که ماده در آن قرار می گیرد .
زمینة مکانیک به 3 قسمت اصلی قابل تقسیم است :
تئوری
عملی مکانیک
محاسباتی
مکانیک تئوری مربوط به قوانین و اصول بنیادین است که به خاطر ارزش علمی واقعی آن مورد مطالعه قرار می گیرد.مکانیک عملی باعث انتقال این دانش تئوری در جهت استفاده‌های مهندسی و عملی از آن می شود . از این دانش تئوری به خصوص در جهت ساخت الگوهای بسیار دقیق از پدیده های فیزیکی استفاده می شود .
مکانیک محاسباتی مشکلات خاصی را با استفاده از شبیه سازی توسط شیوه های عددی ( شمارشی ) که برروی کامپیوترهای دیجیتال اجرا می شوند حل می کند .
تذکر 1-1) از ریاضیدانان ، شخصی که به جستجوی راه حل هایی در مورد مشکلات مشخص شده می پردازد می تواند شیوة کار خود را به مکانیک محاسباتی محدود کند . کسی که به جستجوی مشکلاتی می پردازد که متناسب با راه حل های ارائه شده می باشند به تعیین مکانیک عملی می پردازد. و شخصی که می تواند وجود مشکلات و راه حل ها را به اثبات برساند می تواند مکانیک تئوری را توصیف کند .
1-1-1) مکانیک محاسباتی :
چندین شاخه از مکانیک محاسباتی با توجه به مقیاس فیزیکی مورد نظر قابل تفکیک می باشند

میکرومکانیک و نانو مکانیک

نانو مکانیک در ارتباط با سطوح اتمی و مولکولی ماده می باشد بدین معنی که ارتباط نزدیکی با فیزیک و شیمی ذره دارد . ارتباط میکرومکانیک عمدتاً با سطوح دانه‌ای و بلوری ذره می باشد. کاربرد اصلی میکرومکانیک در زمینة تکنولوژی، طراحی و ساخت مواد و ابزارهای میکرو می باشد.
مکانیک همگن ( پیوستار ) به بررسی بدنه ها در سطح ماکروسکوپی و با استفاده از الگوهای همگن می پردازد. در این الگوهای همگن ساختار میکرو به صورت همگن درآمده است.
دو قسمت قدیمی استفاده از مکانیک همگن ( پیوستار )‌مکانیک جامد و مواد سیال می‌باشد .شیوة اولی شامل ساختارهایی می شود که به خاطر دلایل روشن و واضحی با مواد جامد ساخته می شوند.
مکانیک محاسباتی جامد از روش علوم کاربردی استفاده می کند. در حالی که مکانیک ساختاری محاسباتی برروی استفاده های فن آوری جهت تجزیه و تحلیل و طراحی ساختارها تأکید دارد.
فیزیک چند گانه یک مورد جدیدتر می باشد .
این قسمت سیستم های مکانیکی را رد بر می گیرد که فراتر از مرزهای کلاسیک مربوط به مکانیک مواد سیال و جامد می باشند. که به عنوان مثال می توان به تأثیر متقابل ساختارها و مواد سیال اشاره کرد.
به علت تأثیر متقابل سیستم های الکترومغناطیسی ، مکانیکی و سیستم تنظیمی برروی یکدیگر ، مسائل مربوط به تغییر فاز به مانند ذوب یخ و انجماد فلز در این قسمت گنجانده می شوند.
در نهایت ، System ( سیستم ) نوع اجسام مکانیکی و نیز نوع کارکرد آنها را مشخص میکند یعنی مشخص می سازد که این مواد طبیعی هستند و یا اینکه مصنوعی می باشند و چه نوع عملکردی دارند . نمونه های از سیستم های ساخت بشر عبارتند از :
هواپیماها ، ساختمانها ، برجها و موتورها و ماشین ها و ریز ترانشه ها ، تلسکوپ های رادیویی ، اسکیت ها و آب پاش های گردان .
سیستم های بیولوژیکی به مانند یک وال ، آسیب و گوش داخلی یا یک درخت کاج وقتی از نظر بیومکانیک مورد مطالعه قرار می‌گیرند در این بخش گنجانده می شوند. چیزهای مربوطه به اختر شناسی ( نجوم ) ، زیست محیطی و جهان هستی نیز سیستم‌ها را شکل می دهند . در توسعه شاخه های مربوط به مکانیک محاسباتی ، سیستم کلی ترین مفهوم به حساب می آید. یک سیستم توسط تفکیک پذیری و تجزیه مورد بررسی قرار می‌گیرد بدین ترتیب که : رفتار سیستم از رفتار اجزای آن به همراه تأثیر متقابل بین اجزا ناشی می شود قطعات و اجزاء به اجزای کوچکتری تجزیه می‌شوند و این عمل بدین ترتیب ادامه می یابد زمانی که این فرآیند تجزیه به صورت سلسله مراتبی ادامه می یابد قطعات مستقل جهت دارا بودن رفتارهای منظم و مستقل از یکدیگر به حد کافی ساده می شوند اما تأثیر قطعات برروی یکدیگر پیچیده تر می‌شود. می توان نتیجه گرفت که یک شیوة تعادل جهت مشخص کردن محل پایان تجزیه قطعات وجود دارد .


دانلود با لینک مستقیم


تجزیه و تحلیل ساختارهای انعطاف پذیر خطی با استفاده از شیوة اجزای محدود (FEM)

دانلود مقاله مقدار پلاکت ها و سایر اجزای خون

اختصاصی از فی لوو دانلود مقاله مقدار پلاکت ها و سایر اجزای خون دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله مقدار پلاکت ها و سایر اجزای خون


دانلود مقاله مقدار پلاکت ها و سایر اجزای خون

پلاکت‌ها، اجزای کوچک مسطحی هستند که در خون وجود دارند و از بقیه سلو‌ل‌های خونی بسیار کوچک ترند. این ساختارها حاوی آنزیم‌هایی هستند که باعث انعقاد خون می‌شوند و وظیفه اصلی آنها جلوگیری از خون‌ریزی و خارج شدن گلبول‌قرمز از داخل رگ است.

علامت Plt در آزمایش خون نشان‌دهنده تعداد پلاکت‌ها در هر میلی‌لیتر مکعب خون است و عدد مربوط به آن معمولا بزرگ ترین عدد برگه آزمایش خون است.

غیر از کنترل انعقاد خون، از میزان پلاکت برای بررسی روند بهبود نارسایی مغز استخوان و بیماری‌های خونی هم استفاده می‌شود.

مقادیر طبیعی : پلاکت بین 150 هزار تا 400 هزار در هر میلی‌مترمکعب خون برای بزرگسالان طبیعی است. در نوزادان این مقدار کمی بیشتر است.

محدوده خطر : پلاکت زیر 50 هزار یا بیشتر از یک میلیون غیر طبیعی است و نیازمند توجه خاص است.

چه چیزهایی پلاکت را کاهش می‌دهد؟

بزرگ شدن طحال، خون‌ریزی شدید و مصرف پلاکت، لوسمی یا سرطان خون، ترومبوسیتوپنی، انواع وراثتی کمبود پلاکت، انعقاد منتشر خون در داخل رگ‌ها، شیمی‌درمانی بعد از سرطان، عفونت و نارسایی مغز استخوان باعث کاهش پلاکت می‌شوند. عدم تولید پلاکت می‌تواند به خاطر مشکلات استخوانی نیز باشد.

چه چیزهایی پلاکت را افزایش می‌دهد؟

بیماری‌ آرتریت روماتویید، کم‌خونی فقر آهن، مشکلات بعد از برداشتن طحال، بعضی سرطان‌ها و بیماری‌های ژنتیکی خاص باعث افزایش مقدار پلاکت می‌شوند.

چگونگی انجام آزمایش خون

آزمایش خون یکی از ساده‌ترین روش‌های آزمایشی است. با پیشرفت تکنولوژی و وجود دستگاه‌های جدید معمولا پس از چند دقیقه می‌‌توان پاسخ این آزمایش را دریافت کرد.

برای انجام این آزمایش حدود 5 تا 7 میلی‌لیتر از خون وریدی (سیاهرگی) لازم است که معمولا آن را در یک لوله آزمایش که با ماده ضدانعقاد خون پوشیده شده است جمع‌آوری می‌کنند.

برای ترکیب شدن بهتر ماده ضدانعقاد با خون، موقع‌ خون‌گیری و کمی بعد از آن، لوله را تکان می‌دهند. در طی انجام آزمایش باید از هر اتفاقی که موجب تخریب سلول‌های خونی می‌شود جلوگیری کرد. بعد از انجام آزمایش باید مدتی روی محل خون‌گیری فشار آورد تا خون بند بیاید.

در موارد کم‌‌خونی شدید هم، خون‌گیری برای انجام آزمایش خون مشکلی ایجاد نمی‌کند. برای کسانی که از سوزن یا مشاهده ی خون ترس دارند، باید تمهیدات ویژه در نظر گرفت.

بهترین زمان برای انجام آزمایش خون صبح و در شرایط طبیعی بدن است. استرس، فعالیت بدنی شدید و یا خون‌ریزی حاد می‌تواند نتایج آزمایش را کمی تغییر دهد

شامل 3 صفحه فایل WORD قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله مقدار پلاکت ها و سایر اجزای خون