فصل1: مقدمه
2
۱-۱ طرح مسئله
2
۲-۱ اهداف تحقیق
۳
۳-۱ معرفی فصل های مورد بررسی در این تحقیق
۴
فصل2: انرژی باد و انواع توربین های بادی
۵
۱-۲ انرژی باد
۶
۱-۱-۲ منشا باد
۶
۲-۱-۲ پیشینه استفاده از باد
۷
۳-۱-۲ مزایای انرژی بادی
۸
۴-۱-۲ ناکارآمدیهای انرژی بادی
۹
۵-۱-۲ وضعیت استفاده از انرژی باد در سطح جهان
۱۰
۲-۲ فناوری توربین های بادی
۱۱
۱-۲-۲ توربینهای بادی با محور چرخش افقی
۱۲
۲-۲-۲ توربینهای بادی با محور چرخش عمودی
۱۲
۳-۲-۲ اجزای اصلی توربین بادی
۱۴
۴-۲-۲ چگونگی تولید توان در سیستم های بادی
۱۵
۱-۴-۲-۲ منحنی پیش بینی توان توربین باد
۱۵
۳-۲ تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS) بر اساس نحوه عملکرد
۲۰
۱-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت ثابت
۲۰
۲-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت متغیر
۲۲
۳-۳-۲ سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)
۲۴
۴-۳-۲ سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل فرکانسی با ظرفیت کامل
۲۶
فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات
۲۷
۱-۳ مرورری بر کارهای انجام شده
۲۹
۲-۳ کنترل DFIG
۳۳
۳-۳ مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه
۳۶
۴-۳ مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)
۴۰
۵-۳ الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO
۴۴
۶-۳ نتیجه گیری
۴۷
فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات
۴۸
۱-۴ بهینه سازی طراحی کنترلکننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)
۴۹
۱-۱-۴ نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO
۵۳
۴-۲ نتیجه گیری
۵۹
فصل پنجم: طراحی کنترل کننده فازی
۶۱
۱-۵ منطق فازی
۶۲
۱-۱-۵ تعریف مجموعه فازی
۶۲
۲-۱-۵ مزایای استفاده از منطق فازی
۶۳
۵-۲ طراحی کنترل کننده فازی
۶۴
۱-۲-۵ ساختار یک کنترل کننده فازی
۶۴
۱-۱-۲-۵ فازی کننده
۶۵
۲-۱-۲-۵ پایگاه قواعد
۶۶
۳-۱-۲-۵ موتور استنتاج
۶۶
۴-۱-۲-۵ غیر فازی ساز
۶۷
۳-۵ طراحی کنترلکننده فازی بهینه شده با الگوریتم PSO
۶۸
5-3-1 نتایج شبیه سازی
۷۲
فصل ششم: نتیجه گیری و پیشنهادات
78
۱-۶ نتیجه گیری
۷۹
۲-۶ پیشنهادات
۸۱