فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جزوه آموزشی سازه های قوسی

اختصاصی از فی لوو جزوه آموزشی سازه های قوسی دانلود با لینک مستقیم و پر سرعت .

جزوه آموزشی سازه های قوسی


جزوه آموزشی سازه های قوسی

این فایل حاوی جزوه آموزشی سازه های قوسی می باشد که به صورت فرمت PDF در 22 صفحه در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

فهرست
قوس
کربل
فرم قوس
سیر تکاملی قوس
خیز و رانش
خط رانش
انوع قوس
قوس با مصالح بنایی
پایداری قوس با مصالح بنایی
انواع قوس مصالح بنایی
انواع قوس های مقاوم در برابر خمش

 

تصویر محیط برنامه


دانلود با لینک مستقیم


جزوه آموزشی سازه های قوسی

دانلود تحقیق جوشکاری قوسی با گاز محافظ

اختصاصی از فی لوو دانلود تحقیق جوشکاری قوسی با گاز محافظ دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق جوشکاری قوسی با گاز محافظ


دانلود تحقیق جوشکاری قوسی با گاز محافظ

مقدمه
اساس روش GMAW بر برقراری قوس الکتریکی میان الکترود (سیم‌جوش) مصرف شدنی و قطعه کار می‌باشد و قوس و حوضچه جوش توسط گاز بی اثر محافظت می‌‌گردد. این روش به دو صورت اتوماتیک و نیمه اتوماتیک قابل انجام می‌‌باشد.تمام فلزات و آلیاژهای مهم صنعتی مانند فولادهای کربنی، فولادهای کم آلیاژ، فولادهای زنگ نزن، آلیاژهای آلومینیم، مس، نیکل، در تمام وضعیتها با ازاین روش قابل جوشکاری می‌‌باشند.

تاریخچه فرایند
[ویرایش] تجهیزات و مواد
[ویرایش] منبع نیرو POWER SOURCE
جریان متناوب به ندرت در روش GMAW بکار می‌‌رود. بیشترین استفاده از جریان مستقیم با وضعیت REVERSE-POLARITY می‌‌باشد. البته گاهی اوقات که که ضرورت ایجاب کند که نفوذ کم باشد از وضعیت STRAIGHT-POLARITY استفاده می‌‌گردد. انتخاب بین ژنراتور و ترانس رکتیفایر بستگی به قابلیت دسترسی به برق دارد. اگر در زمینه دسترسی به خطوط نیرو مشگلی وجود نداشته باشد. ترانس رکتیفایر ترجیح داده می‌شود زیرا هم ارزانتر است هم تعمیر نگهداری آن آسانتر می‌‌باشد.در GMAW هم از منابع قدرت ولتاژ ثابت استفاده می‌‌گردد هم از جریان ثابت.

[ویرایش] مشعل جوشکاری welding gun
[ویرایش] سیستم تغذیه کننده WIRE-FEED SYSTEM
این سیستم تشکیل گردیده است از یک موتور الکتریکی، غلتکهای متغییر، و تجهیزات نگهدارنده و هدایت کننده سیم جوش. انواع مختلقی از سیستم‌های تغذیه کننده سیم وجود دارد، که با توجه به ضخامت الکترود و جنس آن و هم چنین شرایط کار قابل استفاده هستند. این سیستم می‌‌تواند به صورت جدا از واحد کنترل کننده سرعت باشد یا می‌‌تواند با آن یکپارجه باشد. برای بعضی از کاربردهای خاص می‌‌توان سیستم تغذیه کننده را بر روی مشعل نیز تعبیه نمود.در هنگامی که از سیم جوش با آلیاژ نرم استفاده می‌شود، مناسب است از تغذیه کننده أی با حالت PUSH-PULL استفاده گردد. در تغزیه کننده ها با توجه به سختی سیم جوش از غلتکهایی با اشکال مختلف مانند V,U یا مســــطح استفاده می‌‌گردد.

[ویرایش] فناوری فرایند
2- اصول اجرایی در فرآیند فرآیند GMAW ، فرآیندی است قوسی، به این معنا که یک قوس الکتریکی، فلز کار و مواد پرکننده را ذوب می‌کند تا جوش نهایی ایجاد شود. در شکل 3، اجزای فرآیند GMAW نشان داده شده است. قوس (1) بین قطعه کار و سیم‌جوش (2) ایجاد می‌شود. سیم‌جوش فلزی نقش الکترود و مواد پرکننده را برعهده دارد که روی قرقره یا درام (3) قرار دارد و توسط غلتک‌های متحرک (4) در مشعل تغذیه می‌شود. این غلتک‌ها از طریق یک مجرای سیم قابل انعطاف (5) سیم‌جوش را از درون مجموعه شیلنگ خاصی (6) به سمت مشعل (7) هدایت می‌کنند. انرژی الکتریکی قوس، توسط منبع تغذیه (8) تهیه می‌شود. جریان الکتریکی از طریق مجرای اتصال (9) در مشعل، به الکترود می‌رسد. معمولاً مجرای اتصال به قطب مثبت منبع تغذیه و قطعه کار به قطب منفی آن متصل می‌شود. با ایجاد قوس، مدار کامل می شود. گاز محافظ (10) که وظیفه اولیه آن حفاظت از الکترود (2)، و حوضچة جوش (12) در مقابل هوای اطراف است، از طریق نازل گاز محافظ (11) که مجرای اتصال را در برگرفته است، جاری می‌شود. این گاز محافظ ممکن است گاز خنثی یا فعال باشد. جوشکاری MAG/MIG نیز نام خود را از نوع گاز مصرفی اقتباس کرده است: فرآیند جوشکاری قوسی با گاز خنثی فرآیند جوشکاری قوسی با گاز فعال ] 2[ .








شکل 3 : اجزای جوشکاری GMAW ] 2 [ . 3- انتقال فلز در فرآیند GMAW نحوه انتقال فلز پرکننده مذاب به حوضچه جوش، یکی از ارکان مهم فرآیند GMAW می‌باشد. شکل، اندازه، جهت و همچنین شیوه انتقال قطرات به فاکتورهای متفاوتی از جمله نوع گاز محافظ، مشخصات منبع تغذیه، مقدار و نوع جریان جوشکاری، ولتاژ قوس، مواد پرکننده و قطر سیم جوش بستگی دارد. انتقال اسپری محوری، قطره‌ای ، اتصال کوتاه و پالسی حالات اصلی انتقال فلز می‌باشند که خصوصیات GMAW را می‌توان توسط این چهار حالت به خوبی توضیح داد. فیزیک انتقال فلز به خوبی مشخص نیست اما چندین نظریه در مورد نیروهای عامل انتقال وجود دارد. در تمام احتمالات، ترکیبی از چند نیرو، عامل جدایی فلز از الکترود و به جلو بردن آن در طول می‌باشند که توجیه مناسبی برای چهار حالت اصلی و مکانیزم انتقال‌ها هستند ] 1 [ . 3-1- نیروهای مؤثر بر انتقال فلز مطابق شکل 4 نحوه انتقال فلزات مذاب، نتیجه تعادل نیروهایی است که بر قطرة فلز مذاب عمل می‌‌کنند.











شکل 4 : نیروهای مؤثر بر قطره مذاب در هنگام انتقال فلز ] 3 [ .

این نیروها عبارت‌اند از : 1-ویسکوزیته و کشش سطحی این دو خاصیت فیزیکی با یکدیگر ارتباط مستقیم دارند بدین صورت که با افزایش ویسکوزیته، کشش سطحی نیز افزایش پیدا می‌کند. ویسکوزیته و کشش سطحی کمتر، موجب انتقال فلز با قطرات کوچکتر می‌شود. فاکتورهای مهمی بر این دو عامل در فلزات آهنی تأثیر دارند عبارت‌اند از : دما و میزان اکسیژن که با افزایش هر یک از آنها کشش سطحی و ویسکوزیته کاهش پیدا می‌کند. این اثر در مورد الکترودهای پوشش‌دار هم دیده می‌شود. به عنوان مثال در الکترودهای نوع روتیلی که دارای پوششی با مقدار زیاد اکسیژن می‌باشند نسبت به الکترودهای با پوشش بازی که حاوی اکسیژن کمتری هستند، انتقال با قطرات ریزتری صورت می‌گیرد. 2-نیروی جاذبه هنگام جوشکاری نیروی جاذبه عاملی است که باعث می‌شود قطرات به سمت پائین کشیده شوند. اگر جرم قطره افزایش پیدا کند، نیروی جاذبه نیز زیاد می‌شود. زمانی که نیروی جاذبه بزرگ‌تر از نیروهایی باشد که قطره را روی الکترود نگه می‌دارند (مانند کشش سطحی و نیروی اینرسی)، انتقال قطره به صورت اتوماتیک اتفاق می‌افتد. در برخی از فرآیندهای جوشکاری، اثر نیروی جاذبه قابل توجه می‌باشد. این فرآیندها با انتقال فلز به صورت قطره‌ای یا با قطرات درشت از یکدیگر تشخیص داده می‌شوند (مانند فر‌آیند جوشکاری با گاز CO2) . 3- جت پلاسما مستقل از موقعیت قطب‌های مثبت و منفی، اندازه قوس در نزدیکی الکترود نسبت به اندازه آن در نزدیکی سطح فلز همیشه کوچکتر است که علت آن دانسیته‌های جریان متفاوت می‌باشد. به دلیل آنکه مساحت نوک الکترود نسبت به مساحت قطب مخالف کوچکتر است دانسیته جریان نزدیک الکترود نسبت به نزدیکی سطح قطعه کار همیشه بیشتر است. این پدیده باعث می‌شود که فشردگی میدان مغناطیسی در نزدیکی الکترود زیادتر باشد و یک گرادیان فشاری داخل قوس به وجود آید. گرادیان فشاری موجب ایجاد نیرویی محوری و دور شدن قوس از الکترود می‌شود. این اثر باعث ایجاد جریان سریعی از پلاسمای داغ می‌شود برخی از گازهایی که به مرکز قوس وارد می‌شوند به سرعت تا دماهایی در حدود k 10000 گرم شده و منبسط می‌شوند و به همین دلیل سرعت جریان پلاسما در داخل ستون بسیار زیاد (تقریباً به اندازه سرعت صوت) می‌شود. این جریان پلاسما موجب ایجاد جت پلاسما داخل قوس می‌شود که برای جداسازی قطره مفید بوده و نقش مهمی در انتقال فلز بر خلاق جهت نیروی جاذبه در جوشکاری بالای سر دارد. 4-اثر پینچ اگر جریانی از یک هادی فلزی عبور کند، میدان مغناطیسی در اطراف آن ایجاد می‌شود که شدت این میدان بستگی به دانسیته جریان دارد. (شکل 5) . در جوشکاری، الکترود نقش هادی فلزی را دارد.

 

 

 

شامل 61 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق جوشکاری قوسی با گاز محافظ

تحقیق در مورد مشخصات فنی سد قوسی کارون

اختصاصی از فی لوو تحقیق در مورد مشخصات فنی سد قوسی کارون دانلود با لینک مستقیم و پر سرعت .

 

فرمت فایل:word

 

 

تعداد صفحات:27

 

 

 

 

 

 

مشخصات فنی سد قوسی کارون 3

طراحی و ساخت پل های قوسی سد  کارون 3

 

مقدمه

پل‌های قوسی بزر گر اه جایگزین طرح کارون 3 یکی دیگر از پروژه‌های عظیم می‌باشد که طراحی، محاسبات، ساخت و نصب آن توسط شرکت ماشین‌سازی اراک انجام شده است و می‌تواند از جنبه‌های مختلف مشروحه ذیل به‌عنوان یکی از فعالیت‌های انجام شده در جهت توسعه تکنولوژی و تحقیقات در سال‌های‌1380 تا 1383‌شرکت قرار گیرد:

 اعتماد به نفس و جسارت مهندسی  شرکت در پذیرش طراحی، ساخت و نصب پروژه.

 ثبت رکورد جدید برای کشور در صنعت پل‌سازی با طرح و ساخت و نصب پلی با دهانه قوس‌264 متر.بزرگترین دهانه‌های پل طراحی شده در ایران توسط واحد مهندسی شرکت قبل از این پروژه پل‌های قوسی جهان‌آراء خرمشهر و یادگار امام آبادان بر روی رود کارون با دهانه 144 متر می‌باشند.

 اهمیت روش نصب پروژه به لحاظ توپوگرافی محل اجرای پل.

 محدودیت زمانی و فشردگی آن در بخش‌های طراحی، ساخت و نصب.

 استفاده از تخصص نیروهای داخلی و امکانات موجود در تمامی فعالیت‌های پروژه.

 صرفه‌جویی ارزی حدود (هشتصد هزار) دلار در طراحی که با صرفه‌جویی‌های ارزی در عملیات ساخت و نصب این مبلغ تا  (پنج میلیون‌) دلار قابل پیش‌بینی می‌باشد.

با توجه به حسن نیت مدیران ارشد شرکت توسعه منابع آب و نیروی ایران ایران نسبت به استفاده از توانمندی‌های داخلی دراحداث این پل و به‌دلیل تجارب ارزنده شرکت در طراحی، ساخت و نصب پل‌های بزرگ، مطالعه اولیه و تهیه پیش‌طرح از زمستان سال 1379‌در دستور کار این‌شرکت قرار گرفت و با تهیه چندین گزینه مختلف و بررسی‌های فنی هر یک از طرح‌ها، طرح نهایی پل اول تأیید گردید.

این پل در بالا دست سد کارون3 و به‌منظور برقراری و حفظ و ارتباط جاده خوزستان- شهرکرد پس از آبگیری دریاچه سد و بر روی دره‌ای به عمق حدود 250‌متر احداث گردیده است. کارفرمای این پروژه مجری طرح کارون‌3‌و مشارکت شرکت‌های رهآور- هگزا به‌عنوان مشاورین کارفرما می‌باشند. در بخش نصب علا‌وه بر مشارکت مهندسین مشاور ایرانی ذکر شده، شرکت واگنربیرو از کشور اتریش نیز مشاور این پروژه می‌باشد که متأسفانه همکاری این شرکت در مراحل حساس و کلیدی پایانی پروژه شایسته نبود و شرکت ماشین‌سازی‌اراک با اتکا به نیروی کاری و متخصص خود و با سعی و تلاش شبانه روزی عملیات نصب را با موفقیت و بدون حضور ناظر خارجی پروژه به پایان برد.

 

 

مشخصات فنی پل و نحوه اجرای آن :

دهانه میانی و اصلی پل اول به صورت قوس از زیر، با دهانه قوس 264=212 x81+91x متر، مرکز تا مرکز مفصل‌ها 252 متر و خیز قوس 42متر است، دو دهانه 21 متری پیوسته بر روی پایه‌های بتنی در سمت راست و دو دهانه 12 و 18 متری پیوسته روی پایه‌های بتنی در سمت چپ آن قرار دارد و طول کل عرشه 336 متر و عرض8/11 متر با دو خط عبور و دو پیاده رو در طرفین اجرا شده که از نظر طول دهانه قوسی که تاکنون در کشور اجرا شده است منحصر به‌فرد می‌باشد.

 

با توجه به دهانه بیش از 150متر پل و تأکید آیین‌نامه‌ها و استانداردهای جهانی، پل جهت بارهای جانبی آنالیز دینامیکی شده و طیف‌های زلزله ناقان و طبس مورد استفاده قرار گرفته است و حداکثر بازتاب‌های دینامیکی سازه از قبیل نیروهای داخلی اعضاء، تغییر مکان‌ها و عکس‌العمل‌های تکیه‌گاهی به روش تحلیل دینامیکی تاریخچه زمانی انجام شد. برش پایه به‌دست آمده برای کل سازه از روش تحلیل دینامیکی طیفی با برش پایه محاسبه شده بروش استاتیکی معادل مقایسه و بازتاب‌های محاسبه شده بر اساس روش‌های آیین‌نامه زلزله 2800‌ایران اصلا‌ح شده‌اند.

بزرگترین دهانه پل زیر قوسی موجود در کشور قبلاً  پل قطور بوده است که پل ارتباطی مسیر راه آهن ایران- ترکیه می‌باشد. این پل در حدود 30 سال پیش توسط یک شرکت آمریکایی احداث گردیده است. با اتمام پروژه پل اول طرح کارون3، شرکت ماشین‌سازی اراک طراح، سازنده و نصاب بزرگترین پل قوسی کشور و زیر قوسی در خاورمیانه شده است. (شکل)

 

در نهایت پس از اتمام عملیات نصب و تکمیل سازه منحنی قوس پل به صورت سهمی و سیستم خرپایی با ارتفاع 8 متر و عرض 9 متر با مقاطع قوطی شکل می‌باشد. چهار مقطع طولی خرپا توسط مهاربندی‌های افقی و عمودی به یکدیگر متصل و در طرفین با چهار مفصل بر روی فونداسیون قرار می‌گیرند به عبارت دیگر قوس به‌صورت دو مفصل طراحی شده است. عرشه پل به صورت تیر مرکب با چهار شاهتیر طولی به دهانه‌های 12، 18و21 متری است که به تیرهای عرضی قاب شده و توسط ستون‌ها بر‌روی قوس متکی می‌باشد. عرشه پل به صورت دال بتنی مسلح روی تیرهای فلزی می‌باشد. دو درز انبساط تیپ 140 M با قابلیت حرکت  بعلاوه و منهای 70 میلیمتر روی اولین پایه‌های بتنی طرفین دهانه قوس قرار گرفته است که عرشه قوس را از عرشه دهانه‌های کناری جدا می‌سازد.

دو تیپ درز انبساط ساخت ماشین‌سازی اراک نیز دهانه‌های کناری را از کوله‌ها جدا می‌سازد. یاتاقان‌های دهانه‌های کناری از نوع نئوپرین تیپ2 می‌باشد و یاتاقان‌های عرشه قوس در طرفین و در محل درز انبساط به صورت غلطکی طراحی و ساخته شد. که جابجایی افقی آن در امتداد عرشه به وسیله چرخ دنده و شانه‌های راهنما کنترل می‌شود.

وزن کل قطعات فولادی پل شامل عرشه، ستون‌ها، خرپای‌قوس‌و‌... حدود‌2500‌تن و جنس تمام مواد از نوع فولا‌د کورتن‌دار با مقاومت بالا می‌باشد.

در طرح پل، بارگذاری مطابق با نشریه139‌سازمان مدیریت و برنامه‌ریزی و آیین‌نامه زلزله 2800 و بارگذاری 519 ایران و طراحی عناصر فلزی پل مطابق با استاندارد‌96 AASHTO ‌صورت گرفته است. همچنین استاندارد شماره 10155 EN مطابق با DIN آلمان برای مواد کورتن‌دار، استانداردهای‌6916، 6915،‌6914‌ DIN‌ جهت اتصالات و استاندارد‌5/1 ASWD جهت جوشکاری و نیز استاندارد ASTM   برای موارد متفرقه، ملاک عمل قرار گرفته است.

در گروه فلزی و سازه ماشین‌سازی اراک تیم مهندسی و طراحی تشکیل و طراحی در پاییز‌1380‌آغاز شد. طراحی اولیه پل اول با دهانه میانی204‌متر از نوع زیر قوسی در مدت‌2‌ماه بر اساس داده‌ها و نقشه‌برداری انجام شده از طرف مشاور کارفرما، انجام و برآورد مواد شده و مواد مورد نیاز سفارش‌گذاری شد و‌6 ماه پس از طراحی عملیات ساخت نیز با موارد رزرو شده موجود در شرکت شروع شد.

اولین شوک پروژه فروردین ماه سال‌1381‌مبنی بر اشتباه نقشه برداری و توقف کار عملیات طراحی و ساخت طی جلسه‌ای در تهران اعلا‌م شد. پس از میخ‌کوبی مجدد و نقشه‌برداری در سایت دهانه اصلی و میانی پل اول به 264 متر تغییر یافت، حدود 50 متر دهانه نقشه‌برداری شده کوتاه گزارش داده شده بود. پس از دو ماه کار فشرده در دو شیفت کاری، تیم طراحی مجدداً طراحی و محاسبات اولیه گزینه مورد نظر را اصلا‌ح و روند طراحی و محاسبات پروژه بهبود یافت. در این زمان مواد سفارش شده قبلی به گمرک رسیده بود و این در حالی بود که طبق محاسبات جدید علا‌وه بر مواد خریداری شده 600 تن مواد دیگر مورد نیاز بود. طراحی با محدودیت‌های مواد موجود خریداری شده و سفارش کسری پیگیری شد. برای جلوگیری از تأخیر در اجرای پروژه تصمیم‌گیری شد که از مواد رسیده برای اولویت‌های اول نصب استفاده شود و مواد سفارش شده جدید برای اولویت‌های انتها و آخری استفاده گردد. همزمان با ادامه فعالیت‌های طراحی و تهیه نقشه‌های ساخت و کنترلی، عملیات اولیه شامل قطعه‌زنی، برشکاری، لبه‌سازی، خم‌کاری و سوراخ‌کاری جهت بیش از 000،360 ( سیصد و شصت هزار) قطعه پل در دو کارگاه عملیات اولیه 1‌و2‌و دو کارگاه کمکی و به دنبال آن ساخت پس از تأخیر طولانی  مجدداً  آغاز شد و با توجه به توقف ایجاد شده و پر شدن ظرفیت کارگاه‌های پل‌سازی از پتانسیل کارگاه‌های تحت فشار، تجهیزات پروژه‌ای استفاده شد. علی‌رغم مشکلات فراوان کارگاهی و تجهیزاتی پنل‌های4ِ،‌2،‌1و‌5 در تجهیزات پروژه‌ای و پنل‌های 11، 10، 9، 8، 7، 6، 4، 3 در پل‌سازی به ترتیب اولویت شروع و پیش مونتاژهای صفحه‌ای پنل‌ها نیز در کارگاه مذکور انجام شد.

عملیات ساخت عرشه پل اول نیز در کارگاه‌های سازه به همراه دیگر متعلقات پل موازات با سازه‌های پل‌سازی و تجهیزات پروژه‌ای ادامه داشت. جهت سادگی و تسریع در عملیات نصب اتصالات اعضای اصلی به صورت ترکیبی پیچ و مهره و جوش به طوری‌که سه طرف قوطی‌ها اتصالات اصطکاکی پیچ  و مهره و بعد فوقانی آن به صورت جوش در محل طراحی شده بود.

اتصالات المان‌های I   شکل‌نیز به‌صورت اتصالات اصطکاکی پیچ و مهره‌ای در نظر گرفته شده بود. با وجود بیش از 000،80(هشتاد هزار) پیچ در طرح پل اول، عملیات سوراخ‌کاری و تجهیزات مورد نیاز آن در مدت زمان معین در حالت‌های مختلف یکی از گلوگاه‌های پروژه در هنگام ساخت بود. برای رفع این گلوگاه‌ها سوراخ‌کاری در سه شیفت کاری و با پنج دستگاه دریل پرتابل افقی و عمودی و چهار دریل ثابت پیگیری شد و به همت همکاران سخت‌کوش کارگاهی و مدیریت گروه سازنده از مهرماه1381‌عملیات پیش مونتاژ قوس و عرشه به صورت جداگانه آغاز شد.  پیچیدگی اعضای اصلی قوطی شکل درهنگام ساخت، انطباق اتصالات، خم اتصالات و جمع‌شدن گاز در داخل قوطی‌ها از مشکلات دیگر ساخت پروژه بود که متأسفانه 4 مهرماه 1381 سه تن از همکاران کارگاهی در اثر انفجار یکی از قوطی‌های نیمه ساخت مجروح شدند.

جهت پیش‌مونتاژ نهایی پل به صورت خوابیده و کاهش عملیات پیش مونتاژ فضایی، پیش مونتاژهای صفحه‌ای دو پنلی در کارگاه‌ها در نظر گرفته شد. در این مرحله کلیه اعضای قطری سوراخ‌کاری شده و به پیش مونتاژ صفحه‌ای ارسال و پس از مونتاژ و خیزگیری اعضای اصلی مطابق دیاگرام کمبر پیش‌بینی شده و نقشه‌های کنترلی تهیه شده به این مجموعه جوش شده و سوراخکاری اتصالات اصلی انجام شد. و نصف سوراخکاری اتصالات ابتدا و انتهای دو پنل مونتاژ فضایی نهایی انجام می‌شد.

به علت بزرگی و حجیم بودن سازه پل‌و محدودیت‌های سالن‌های کارگاه‌های شرکت امکان عملیات پیش مونتاژ در آن‌ها وجود نداشت و پیش مونتاژ در فضای باز انجام شد. عملیات پیش مونتاژ تیرهای طولی به تیرهای عرضی  و کنترل مهاربندهای عرشه و سوراخ‌کاری اتصالات اصلی به‌صورت افقی و عمودی در فضای باز بین سالن‌های شرکت و با توجه به محدودیت‌های تجهیزات، عوامل محیطی و جوی حدود یکسال به طول انجامید و قطعات اول اولویت نصب آبان ماه 1381‌جهت نصب به سایت ارسال شد.

با توجه به وسعت مورد نیاز برای پیش مونتاژ قوس، مکانی به جز انبار محصول ماشین‌سازی اراک یافت نشد. این مکان نقشه‌برداری شد که از ابتدا تا انتها در طول‌264‌متر حدود‌5/3‌متر اختلا‌ف ارتفاع وجود داشت که می‌بایست با ساپورت‌های مناسب تراز می‌شد. از آبان 1381 عملیات پیش مونتاژ قوس از سمت راست با توجه به اولویت‌های نصب آغاز شد. و با فراز و نشیب‌های فراوان پیگیری و عملیات پیش مونتاژ تحت نظارت و مدیریت شرکت به پیمانکار واگذار شد. فضای مورد نیاز میخ‌کوبی و مثلث‌بندی شده و سازه‌های صفحه‌ای که در کارگاه‌ها پیش مونتاژ و دمونتاژ شده بود در مسیرهای تعیین شده ابتدا به صورت صفحه‌ای به دنبال هم پیش‌مونتاژ و منحنی آن مطابق دیاگرام کمبر نهایی به وسیله دوربین کنترل می‌شد.

پس از مونتاژ صفحه زیرین صفحه فوقانی نیز روی آن مونتاژ و کنترل شده و پس از جداسازی صفحه فوقانی، این مونتاژی‌ها با جرثقیل‌های موبایل در موقعیت خود روی سازه‌های پیش‌بینی شده استقرار و کنترل‌های لازم انجام می‌شد. تمام اعضای مهاری و تیرهای عرضی قوس که قبلا‌ً سوراخکاری شده بود درموقعیت خود قرار گرفته و جوش می‌شدند. برای کنترل و پایداری لازم و ایمنی سازه حدود 200  تن سازه موقت و ساپورت ساخته شد. عوامل جوی (سرمای شدید زمستان 1381، بارش‌های زمستانی، تغییرات دمای محیط در طی شبانه روز و ماه‌های مختلف سال) کابل‌های فشار قوی و عوامل محیطی دیگر را می‌توان به‌عنوان دلایلی برای کندی پیش مونتاژ ذکر کرد. که این امر نیز به همت و تلاش تمامی همکاران و پیمانکار مربوطه در تیر ماه 1382 به پایان رسید. لازم به ذکر است که از سمت راست عملیات دمونتاژ قوس با توجه به اولویت‌های نصب و نیاز سایت انجام و قطعات به سایت ارسال شد.

طراحی اولیه جرثقیل‌های نصب پس از بررسی و نهایی شدن پل توسط تیم مهندسی گروه فلزی و سازه جهت طراحی نهایی سازه و مکانیسم‌های جرثقیل و خرید به گروه نصب و راه‌اندازی ارائه شد که پس از مناقصه، گروه ماشین و مونتاژ ماشین‌سازی اراک جهت طراحی و ساخت انتخاب شد. و پس از طراحی نهایی مطابق آیین نامه ‌های AISC  و FEM   و ساخت سازه جرثقیل‌ها و خرید سیستم‌های مکانیکی و برقی، سازه جرثقیل‌ها توسط تیم مهندسی پروژه‌ها بازنگری شد و طرح نهایی بهینه شده در انبار محصول ماشین‌سازی اراک پیش مونتاژ و کنترل‌های لازم باربری انجام شد. و پس از صحت از کارکرد جرثقیل‌ها دمونتاژ آغاز و قطعات جراثقال به سایت ارسال شد. ظرفیت هر کدام از جرثقیل‌ها 20 تن به عبارتی دو بار 10 تن می‌باشد و وزن هر دستگاه حدود 70 تن می‌باشد. سازه جرثقیل‌ها طوری طراحی شده که چرخ‌های آن هنگام باربرداری روی چهار ستون پل قرار گرفته و بارها از طریق ستون‌ها به قوس منتقل می‌شود و اثرات نامطلوب انتقال بار از بین‌رفته یا کاهش یافته است. چهار ساپورت مفصلی جهت جلوگیری از واژگونی جراثقال در هنگام باربرداری و بارهای جانبی د ر تیرهای میانی عرشه پل تعبیه شده است. دو دستگاه گاری حمل قطعات وظیفه قطعه رسانی از کوله‌ها به پشت جرثقیل‌ها را عهده‌دار بود.

نظر به صعب‌العبور بودن منطقه و عمق بسیار زیاد و شیب طرفین دره و عدم امکان استفاده از پایه‌های موقت و روش‌های نصب متداول دیگر، نصب پل از اهمیت بسزایی برخوردار بود. طرح ویژه روش نصب پل با طراحی سازه پل به صورت خودایستا و کنسول و استفاده از جرثقیل‌های دروازه‌ای ویژه که در صفحه‌های قبل به آن اشاره شده است، از طرفین در نظر گرفته شد. بارهای ناشی از وزن پل، جراثقال‌ها و بارهای جانبی در مراحل نصب توسط سیستم خرپای فضایی متشکل از عرشه پل، خرپای قوس پل و مهارهای قطری به کوله‌ها و پاتاق منتقل می‌شد. تیرهای طولی در انتهای عرشه به کوله‌ها و کوله‌ها با سیستم انکریج و تزریق تا عمق 24 متر به صورت پس تنیده به کوه مهار شده بودند همچنین با همین روش اعضای انتهای خرپای قوس به پاتاق و پاتاق نیز به کوه مهار شده بود.

گره‌های بحرانی پل، به خصوص تکیه‌گاه‌های موقت نصب که می‌بایست نیروهایی با مقادیر زیاد و با نوسان بارگذاری را انتقال دهند، علاوه بر روش‌های کنترل شده با روش طراحی المان‌های محدود Finite Element   نیز مدل و آنالیز تنش و کنترل شدند. به عنوان مثال می‌توان محل اتصال کرد بالای  قوس به فونداسیون و محل اتصال تیرهای عرشه به کوله در طرفین پل که در مراحل نصب با نیروی محوری کششی به ترتیب 812 تن و 454 تن نیرو و لنگر خمشی 66 تن- متر و 15 تن- متر و گرهِ محل اتصال اولین ستون فلزی به قوس را نام برد.

نصب دو تیپ ابزار دقیق بارسنج و جابجایی سنج درنقاط حساس فونداسیون‌ها امکان کنترل تغییرات وضعیت بارگذاری و جابجایی‌های ایجاد شده در عمق‌های12، 6 و 18 متری پی‌ها را نشان داده و پل در مراحل مختلف نصب تحت کنترل با ضریب ایمنی مناسبی قرار داشت. عرشه‌های دهانه کناری به روش روان‌سازی در موقعیت خود قرار گرفت و جرثقیل‌های دروازه‌ای پس از مونتاژو ریل‌گذاری در روی پلت فرم‌های پیش‌بینی شده و تقویت عرشه روی پایه‌های بتنی طرفین دهانه قوس که جرثقیل بتواند روی کنسول قرار گیرد، روی تیرهای عرشه نصب شده انتقال یافت و آماده نصب قوس شد.سازه جرثقیل‌ها طوری طراحی شده‌اند که امکان نصب‌12‌متر سازه به صورت کنسول در جلوی خود را داشته باشد به عبارتی بتواند یک پانل شامل قطعات اصلی، اعضای قطری، تیرهای عرضی، مهاربندهای قوس، مهارهای قطری، ستون‌های انتهای پنل، تیر عرضی، تیرهای طولی و مهاربندهای عرشه را نصب کند و پس از تکمیل یک پانل و ریل‌گذاری روی آن جرثقیل‌12‌متر به جلو حرکت کرده و این مراحل تا پایان نصب پانل‌10 از طرفین ادامه داشت.

عطف به توضیحات داده شده مشخص می‌گردد که در هر 10 مرحله نصب مشخصه‌های سازه خرپایی فضایی اشاره شده تغییر نموده و سازه‌ای جدید می‌شود بنابراین تا این مرحله از هر سمت10 سازه متفاوت و خود ایستا می‌بایست آنالیز و نتایج به دست آمده برای نیروهای داخلی اعضاء عکس‌العمل‌های تکیه‌گاهی و تغییر مکان‌های هر مرحله با مراحل قبلی جمع‌بندی گردد.

نظر بر این‌که پارامترهای هر کدام از مدل‌های سازه مراحل نصب تغییر نموده و مدل قبلی تحت بار تنش می‌باشد، نتایج حاصل ا ز هر‌10‌مدل سازه را نمی‌توان با هم جمع نمود. در نتیجه حجم عملیات محاسباتی و کنترل‌های لازم بسیار بالا رفته و نیاز به روش، راهکار مناسب، دقت و کنترل‌های فراوان  دارد تا همانند آنچه که د رپروسه و ترتیب نصب قطعات انجام می‌شود، محاسبات نیز در نظر گرفته شود. درهر‌10 مدل محاسباتی خرپای نیم قوس به‌طور‌کامل وجود داشت ولی ستون‌ها، عرشه و مهارهای قطری هر مدل مطابق با قطعات نصب شده بود و قسمت اضافه سازهِ خرپای قوس بدون وزن مدل می‌شد و در هر مدل وزن قسمت‌های مشترک با مدل مراحل قبل غیر فعال و وزن قسمت نصب شدهِ جدید فعال و نتیجه آنالیز حاصل با نتایج آنالیز مرحله قبل جمع می‌شد.

بازتاب‌های نیرویی جهت طراحی و کنترل اعضا و بازتاب‌های عکس‌العمل‌ها جهت طراحی و کنترل تکیه‌گاه‌ها و بازتاب‌های تغییر مکان‌ها قسمتی از دیاگرام کمبر ساخت پل را تشکیل می‌دهد.

نصب سازه پل به‌صورت خود ایستا و کنسول‌(تا طول یکصد‌و‌بیست و شش متر) از طرفین تا پانل مرکزی با تمام مشکلا‌ت و مسایل خاص خود به‌صورت مستقل ادامه داشت. از آنجا که در طول شبانه‌روز فاصله بین دو کنسول حدود 12‌سانتی‌متر، تراز ارتفاعی آن‌ها حدود 3 سانتی‌متر و تابیدگی دو مقطع انتهای کنسول‌ها تقریباً تا 5 سانتی‌متر می‌رسید و همچنین تغییرات ذکر شده در هیچ دوره زمانی ثابت نبود و در هر لحظه محسوس و قابل مشاهده بود، ارتباط و اتصال دو کنسول نیاز  به محاسبات دقیق و تدابیر ویژه‌ای داشت که نتایج عواملی چون نحوه و تابش مستقیم‌آفتاب، دامنه تغییرات دما و باد بود و همچنین انحراف ناشی از هنگام ساخت و نصب از سوی دیگر باعث افزایش انحرافات مطرح شده می‌شد. به‌عنوان مثال، انحراف از محور طولی پل برای هر دو کنسول به 25 سانتی‌متر می‌رسید.

طبق بررسی‌ها و محاسبات دقیق نتیجه‌گیری شد که اتصال دو کنسول به همدیگر الزاماً در یک دوره زمانی بسیار کوتاه انجام شود بنابراین می‌بایست هر دو سازه را به‌طور موقت با استفاده از مفصل‌هایی به هم متصل کرد. پس از طراحی و محاسبات مفصل‌های مورد نظر، این اتصالات قطعه‌زنی و در دو انتهای قطعات پانل‌های 10 و مرکزی مونتاژ، جوش و کنترل‌های لازم انجام شد و تا زمانی که پین‌های اتصالات در جای خود قرار نمی‌گرفت آزادی حرکات سازه دو کنسول د رمرکز مهار نشده بود. برای نصب قطعات پانل مرکزی یکی از جرثقیل‌ها روی پنل 10 قرار گرفت و کل قطعات پنل مرکزی مونتاژ، جوش و کنترل‌های لازم انجام گرفت.

با این وضعیت سازه پل از یک طرف به طول 126 متر و از طرف دیگر 138 متر کنسول بود.

پس از اصلاح انحرافات ایجاد شده با سیستم جکینگ، اتصالات مفصلی  موقت با توجه به محاسبات دقیق در زمان تعیین شده توسط پین‌ها قفل شدند. بلافاصله در ناحیه اتصالات موقت، اتصالات دائمی در سه طرف اعضای اصلی قوطی شکل تکمیل شد. چون این اتصالات ظرفیت باربری لازم را داشتند، اتصالات موقت باز شده و باقیمانده اتصالات اصلی کامل شد. با اتصال سازه‌های دو کنسول و یکپارچه شدن آن‌ها سازه اصلی قوس تشکیل شد که پارامترهای سازه‌ای به‌طور کلی تغییر یافته و سیستم سازه‌ای از خرپای فضایی کنسولی یک سرگیردار تبدیل به یک قوس خرپایی بدون مفصل می‌شود که در تکیه‌گاه‌هاگیردار بوده و تحت تنش‌های حین مراحل نصب قرار گرفته است.

در این مرحله نیز مدل‌های لازم و محاسبات ویژه و خاصی عطف به نکات مطرح شده در طراحی قوس‌های بدون مفصل انجام شد.

با بررسی اجمالی از مطالب فوق درمی‌یابیم که سیستم سازه‌ای پل طی مراحل مختلف از شروع نصب تا راه اندازی تغییرات اساسی نموده است، یعنی ابتدا 11خرپای فضایی کنسول یک سرگیردار، سپس یک قوس تک مفصلی در راس و به‌دنبال آن یک قوس دو سرگیردار و نهایتاً به‌صورت یک قوس دو مفصلی مورد آنالیز و طراحی قرار گرفت.

یکی دیگر از مراحل بسیار مهم، حساس و کلیدی در طراحی و اجرای پل، مرحله آزادسازی تکیه‌گاه‌های موقت و مهارهای قطری بین عرشه، قوس و ستون‌های فلزی پس از نصب و تکمیل خرپای قوس و قبل از نصب و اتصال اسکلت فلزی عرشه در پانل مرکزی می‌باشد، در صورتی که به شکل اصولی و تحت کنترل اجرا نشود، ضربه‌ها و شوک‌های بسیار بالایی به پل وارد می‌شود که موجب بالارفتن تنش‌های موضعی در برخی  نقاط از سازه شده و با ایجاد گسیختگی باعث فرو ریختن پل می‌شود.

آزاد سازی تکیه‌گاه‌های موقت را می‌توان با در نظر گرفتن عواملی چون مکانیسم اجرا، تجهیزات و امکانات مورد نیاز، نیروی انسانی، سرعت کاهش نیرو از تکیه‌گاه‌ها و انتقال آن به سازه، آزادسازی تمام موانع و قیدهای ایجاد شده در مراحل نصب، نظارت دقیق و بازدیدهای مداوم از نقاط بحرانی سازه و تجزیه و تحلیل آن و ادامه روند پیشرفت کار مورد بررسی و تحلیل قرار داد. نحوه و توالی sequence   آزادسازی کل سیستم و موضعی در هر یک از تکیه‌گاه‌های موقت یکی از موارد فوق محسوب می‌شوند که بررسی و تحلیل آن از اهمیت بیشتری برخوردار است.

برای این فعالیت مدل‌های متعددی تهیه و آنالیز شد که ترتیب آزادسازی از یک مکان شروع و تا پایان آن ادامه می‌یافت و در هر مدل پس از آزادسازی قسمتی یا تمامی نیروها، افزایش و یا کاهش نیرو در نقاط دیگر سازه و تکیه‌های موقت مورد بررسی قرار می‌گرفت و با جمع بندی نهایی بهترین گزینه حاصل شد.در این گزینه ابتدا نیروهای کردهای Chord   بالایی یک سمت پل، در مرحله دوم نیروهای کردهای بالایی سمت دیگر پل، آن‌گاه نیروهای تیرهای انتهای عرشه اتصال به کوله در یک سمت پل، سپس نیروهای تیرهای انتهای عرشه اتصال به کوله در سمت دیگر پل آزاد و در مرحله پایانی مهارهای قطری که نیروهای آن‌ها به شدت کاهش یافته بود آزاد و دمونتاژ شد.

در آزاد سازی نیروهای کردهای بالای هر سمت نیز ابتدا نیروی انکرهای کرد اول از مقدار‌120‌تن تا میزان‌80 تن مطابق توالی نشان داده شد در نقشه‌های پس‌تنیدگی کاهش یافت و همین توالی برای کرد دوم تکرار شد و بقیه نیروهای موجود در انکر کردها همانند توالی قبل و در دو مرحله تا به میزان 40 تن و صفر کاهش یافته و رهاسازی این مرحله به اتمام رسید.

برای تیرهای عرشه متصل به کوله در هر سمت نیروی انکرهای هر تیر در مرحله اول از 65 تن تا به میزان 40 تن و در مرحله دوم تا 20تن و در مرحله سوم به صفر کاهش یافته و آزادسازی آن‌ها به اتمام می‌رسد. در عرشه با توجه به جابجایی که بین کوله و تیرها در مرحله آزادسازی به‌وجود میآید و نیرو‌گرفتن مجدد انکرها، حجم عملیات آزادسازی در هر سه مرحله به‌ویژه مرحله پایانی بالا می‌رود.

در مدت یک هفته کلیه عملیات آزادسازی به پایان رسید و پس از نصب تیرها و مهاربندی‌های عرشه پنل مرکزی، تعویض تکیه‌گاه‌های موقت عرشه دهانه‌های کناری طرفین پل با یاتاقان‌های دائمی(اصلی) و برش و تعبیه درز انبساط بین عرشه قوس و دهانه‌های کناری عملیات نصب سازه فلزی پل پایان یافته و سازه پل به‌صورت قوس خرپایی دو سر مفصل تبدیل و آماده دال‌گذاری، آرماتوربندی و بتن‌ریزی عرشه شد.

زمان پیش‌بینی شده برای اجرای کامل پروژه شامل طراحی و مهندسی، تهیه و تدارک مواد، ساخت، پیش‌مونتاژ و نصب 20 ماهه بود، علیرغم مشکلات و تغییرات به‌وجود آمده در بخش مهندسی تامین مواد و ساخت تاخیرات ایجاد نشد و با همزمان نمودن اکثر فعالیت‌ها، عطف به توضیحات و تدابیر اشاره شده در سرفصل‌های قبلی، قطعات مورد نیاز در زمان‌های تعیین شده آماده و جهت نصب به سایت ارسال شد.

با توجه به این‌که در بخش نصب نمی‌توان برنامه زمان‌بندی مستقلی همانند فعالیت‌های طراحی، تأمین مواد و ساخت ارائه نمود از این‌رو برای ارائه یک برنامه زمان‌بندی صحیح و مستقل از فعالیت‌های قبلی برای دوره نصب برنامه زمان‌بندی پیمانکار سیویل که فعالیت‌های آن پیش‌نیاز فعالیت‌های نصب سازه فلزی پروژه است می بایستی با برنامه زمان‌بندی نصب قطعات فلزی پل هماهنگی داشته باشد. یکی از دلایل مهم تاخیر‌در شروع  عملیات نصب و پیشرفت پروژه عدم تحویل جبهه‌های کاری برای شروع عملیات نصب بود.

عواملی از قبیل عدم تحویل همزمان جبهه‌های کاری طرفین پل، تداخل فعالیت‌های پیمانکارسیویل و پیمانکار نصب سازه در شروع، تازگی نوع کار و تجربه اول که به دنبال آن زمان زیادی را در دورهای اولیه نصب قطعات و تنظیمات لازم و همچنین در پانل مرکزی گرفت، نیاز به پرسنل آموزش دیده و متخصص که توانایی کار در ارتفاع را داشته باشد و با سیستم های صخره‌نوردی بتواند به نقاط مختلف سازه دسترسی داشته و فعالیت‌های لازم را انجام دهد (پرسنل در حین کارآموزش دیدند)، ابهامات و مشکلات قراردادی، اشکال در تجهیزات نصب برای پانل‌های ابتدایی 1و 2‌وکوتاه بودن سیم بکسل‌ها، اشکال در سیستم برقی جرثقیل‌ها و اصلاح آن، دشواری و زمان بر بودن تأمین ابزارآلات نصب و لوازم یدکی آن‌ها، سقوط ابزارآلات و اتصالات،  تعداد زیاد پیچ و مهره‌ها ونیاز به ابزارآلات خاص برای مکان‌های مختلف در سازه، پوشش گالوانیزه به روش الکتریکی در اتصالات و حمل و نقل آن، محدودیت‌های جاده‌های دسترسی و پلت‌فرم‌ها که باعث سختی جرثقیل‌ها و طولانی شدن آن و نیاز به کشنده و هل‌دنده برای انتقال بار از جاده دسترسی، تغییرات در سیستم مهار به کوه واصلا‌ح سازه در سایت، تقویت گره‌ها در هنگام نصب، عدم وجود یک کمیته فنی متشکل از نمایندگانی از سازمان‌های ذیربط و مستقر در سایت که تعهد و مسئولیت در قبال پروژه داشتند، پراکندگی در خدمات مشاوره‌ای، عدم هماهنگی بین پیمانکاران، مدیریت نامتمرکز و پراکنده، باعث تأخیر و طولانی شدن مدت زمان پروژه شد. برای دستیابی به زمان برنامه‌ریزی شده کارفرما جهت بهره‌برداری پروژه سد و نیروگاه طرح کارون 3 که هزینه بسیار بالایی برای آن صرف شده بود و در صورتی که آبگیری سد در موعد مقرر انجام نمی‌پذیرفت به مدت یکسال بهره‌برداری سد به تعویق می‌افتاد که باعث راکد ماندن سرمایه صرف شده و  عدم تولید نیروی برق و سودآوری پروژه می‌شد لذا بهره‌برداری از این پل‌ها جهت حفظ و ارتباط جاده خوزستان- شهرکرد یکی از عوامل اصلی امکان راه‌اندازی سد و نیروگاه آن بود به همین دلیل عملیات نصب پل با افزودن شیفت کاری شبانه در طرفین پل تسریع شد.

دهانه اصلی و میانی پل دوم نیز به‌صورت قوس از زیر با دهانه قوس 177=20+1212+5 x21+61+5x متر، مرکز تا مرکز مفصل‌ها59/158متر، خیز قوس 40 متر است دو دهانه 19 و 20 متری پیوسته و متصل به عرشه قوس بر روی پایه‌های بتنی قرار دارد و طول کل عرشه 216 متر و عرض8/11 متر با دو خط عبور و دو پیاده رو در طرفین مطابق پل اول اجرا شده است.

در کلیات تمام موارد مطرح شده برای پل اول در مقیاس کوچکتری برای پل دوم صادق است و با توجه به برنامه زمانبندی پل دوم و تغییرات ایجاد شده در طرح و نیاز به بهره‌برداری همزمان با پل اول و مشکلا‌ت اجرایی و تجربیات حاصل از پل اول در روش‌های ساخت،  پیش مونتاژ، نصب و ... پل دوم تجدید نظر اساسی و اصلاحات لازم انجام شد. جزئیات و تشریح مربوط به چگونگی طراحی، ساخت و نصب پل دوم انشاءالله در آینده گزارش خواهد شد. لا‌زم به یادآوری است که پروژه‌های دو قلو در آبان‌ماه 83 پس از قطع جاده قبلی به هنگام آبگیری سد به بهره‌برداری رسیده است.

 

 

 

 

 

 

 

 

 

 


دانلود با لینک مستقیم


تحقیق در مورد مشخصات فنی سد قوسی کارون

دانلود تحقیق برشکاری قوسی پلاسما

اختصاصی از فی لوو دانلود تحقیق برشکاری قوسی پلاسما دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق برشکاری قوسی پلاسما


دانلود تحقیق برشکاری قوسی پلاسما

تعداد صفحات:18  فرمت فایل: word(قابل ویرایش)  فهرست مطالب:

دلایل استفاده از PAC

سرعت های برشکاری

تجهیزات قوسی پلاسما

مشعل پلاسما

کنترل کننده های برشکاری پلاسما

منابع قدرت برشکاری پلاسما

عملیات قوس پلاسما

تغییرات یا اصلاحات فرایند پلاسما

برشکاری پلاسما با دوبله جریان گاز

برشکاری پلاسما با محافظ آب

برشکاری پلاسما با تزریق آب

گازهای تشکیل دهنده پلاسما

ایمنی

روشهای بهره برداری

کیفیت برش

 

برشکاری قوسی پلاسما

برشکاری قوسی پلاسما (PAC) برای برش هر نوع فلزی استفاده می شود ، برشکاری قوس پلاسما غالباً برای برشکاری فولاد کربنی ، آلومینیوم و فولادهای ضد زنگ بکار می رود ، این فلزات از پر مصرف ترین و متداول ترین فلزاتی هستند که در کارگاه جوشکاری استفاده می شوند علاوه بر این فرایند جوشکاری استفاده می شوند علاوه بر این فرایند PAC بر روی هر فلز هادی مانند مس برنج ، و برنز ، نیکل و آلیاژهای آن فلز ، زیرکونیم بنحو دقیقی موثر واقع می گردد ، و حتی برشکاری PAC ،برای برش اورانیم نیز بکار می رود .

دلایل استفاده از PAC

فرایند برشکاری PAC برای برش ورقهای روی هم انباشته ، پخ زدن ورق ، برشکاری شکل گیری (الگو بری) و سوراخ کاری استفاده می شود . در حقیقت مشاهده خواهید کرد که برشکاری های PAC نسبت به شعله اکسی سوخت با ورود حرارت کمتری (با توجه به اینکه پلاسما بسیار داغ تر است ) انجام خواهد گرفت ،چون مشعل پلاسما تا اندازه ای سریع تر از شعله اکسی استیلن کار می کند وسوختی یا اکسید شدگی در مسیر برشکاری و داخل فلز بوجود نمی آید ولی عوض ذوب خواهد شد و بعضی مواقع ، فلز داخل شکاف به طور یکنواخت تبخیر می گردد . نتیجتاً مسایل به طور و مشکلات کاری همراه با تغییر شکل و پیچیدگی فلز اصلی وجود دارد . غالباً مشعل های PAC در برشکاری شکلی (الگوبری) و در ماشین های شیار زنی و در آوردن شیارهای چهار گوش با سرعت زیاد بکار می رود . برشکاری قطعات نسبتاً کوچک به علت وجود جریان برق و OCV زیاد کمی پیچیده و قابل بحث می باشد . سطح صدای جریان شدید گاز پلاسما با سرعت زیاد بسیار است و در حین عمل ، بر اثر سوختن و تبخیر ذرات فلزی ، مقدار کمی دوده فلزی تولید می گردد .

صدا و دودهای حاصل از مشعل دستی با اشکال زیاد کنترل می شود ولی کنترل صدا و دودهای حاصل از مشعل اتوماتیکی که بر روی ماشین برشکاری شعله ای مناسب نصب گردیده هیچ مشکلی ندارد .چرا که دودها و حرارت و صدای حاصل از مشعل پلاسما که بر روی ماشین برشکاری بزرگ نصب گردیده با گذاشتن ورق برشکاری بر رویمیز پر از آب به راحتی قابل کنترل هستند چون آب درست به ته ورق تماس پیدا می کند . باعث می شود دودها و سرباره همانطور که از ته شکاف بیرون آید ،/ در همان جا غوطه ور گردد و صدای جریان شدید پلاسما که در نازل (گلکی)مشعل بوجود آمده با آب خفه شود .


دانلود با لینک مستقیم


دانلود تحقیق برشکاری قوسی پلاسما

طراحی بر اساس قابلیت اطمینان سیستم جداساز اصطکاکی تک قوسی با انحنای ثابت تحت تحریک تصادفی

اختصاصی از فی لوو طراحی بر اساس قابلیت اطمینان سیستم جداساز اصطکاکی تک قوسی با انحنای ثابت تحت تحریک تصادفی دانلود با لینک مستقیم و پر سرعت .

بهره گیری از جداگرهای آونگ اصطکاکی یکی از راه کار های موثر و کارآمد در کاهش وکنترل خرابی سازه ها در برابر زمین لرزه می باشد. چنین ابزارهایی باید از یک سو توانایی تجزیه و اتلاف انرژی کافی به منظور کاهش آسیب سازه ای را داشته باشند و از سوی دیگر باید سختی کافی به منظور جلوگیری از تغییرشکل های زیاد وماندگار را فراهم کنند. این امر منجر به در نظر گرفتن روابطی می شود که بواسطه یک فرآیند بهینه سازی تولید می شوند. در مقاله حاضر تحریک زلزله به عنوان یک فرآیند متغیر تصادفی تلقی می شود. بنابراین طراحی سیستم جداساز بر پایه یک توصیف احتمالاتی از پاسخ دینامیکی سیستم مانند احتمال اولین گذر از سطوح پاسخ بحرانی است. این احتمالات با استفاده از یک تکنیک شبیه سازی موثر و جدید بر پایه روش مونت کارلو بنام تمونه گیری مجانب  محاسبه می شوند همچنین فضای طراحی پارامترهای جداساز با استفاده از نمونه گیری ابرمکعبی لاتین پوشش داده شده و بدلیل خطای آماری ذاتی آنالیز مبتنی بر مونت کارلو، اعمال تکنیک سطح پاسخ بر اساس روش کمترین مربعات متحرک مفید خواهد بود. نتایج نشان می دهند که استفاده از پارامترهای طراحی نهایی از مقادیر بهینه با کمک روش ارائه شده، باعث طراحی ایمن سازه در محدوده مورد نظر با در نظر گرفتن عدم قطعیت ها می شود.

 

سال انتشار: 1394

تعداد صفحات: 8

فرمت فایل: pdf


دانلود با لینک مستقیم


طراحی بر اساس قابلیت اطمینان سیستم جداساز اصطکاکی تک قوسی با انحنای ثابت تحت تحریک تصادفی