فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله درباره روش نامگذاری عناصر شیمیایی

اختصاصی از فی لوو مقاله درباره روش نامگذاری عناصر شیمیایی دانلود با لینک مستقیم و پر سرعت .

مقاله درباره روش نامگذاری عناصر شیمیایی


مقاله درباره روش نامگذاری عناصر شیمیایی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:8

فهرست و توضیحات:
 روش نامگذاری عناصر شیمیایی

در اواخر قرن هیجدهم شیمیدانها به نامگذاری مواد ، توجه جدی کردند . لاووازیه نام کربن Carbon (فرانسه Carbone) را از واژة لاتینی ساخت که برای زغال به کار           می رفت. نامهای اکسیژن Oxygen و ئیدروژن hydrogen (فرانسه Oxygen و hydrogne) ساخت. این نامها بیانگر جزیی از خواص شیمیایی مواد را به همراه داشتند . برسلیوس شیمیدان سویسی که ارزش نامگذاری از منطقی می دانست، به سال 1811 پیشنهاد کرد که نام عناصر باید همه لاتینی باشند، تعدادی از نامهای عناصر فلزی مانند اورانیمUranium ، کروم Chromium ، باریم Barium و … از این گونه اند . وی نامهای لاتین فروم Ferrum ، استانم Stannum و استیبیمStibium  را به ترتیب برای آهن iron ، قلعtin و آتنتیموان antimony به کار برد ونام روی Zinc را از واژه لاتین آن Zincum زینکم ساخت. نامهای سدیم sodium و پتاسیم Potassium به ناتریم natrium و کالیم kalium تبدیل شد. همه عناصر فلزی که پس از این تاریخ کشف شدند ، نامهایی داده شده که به –یم (-ium) یا گاهی –م (-um) ختم می شدند. برای مثال cadmium ، لانتانم lanthanum لیتیم lithium ، تالیم thallium ، رادیم radium و …نام هیلیم helium در مقایسه با اینها غیر عادی است . این عنصر که نخست در طیف نور هاله خورشید کشف شد ، یک فلز قلیایی به شمار رفت . اما هنگامی که در زمین نیز کشف شد ، دریافتند که یکی از گازهای بی اثر (کمیاب) است .

تعدادی از فلزهای تازه، نخست به صورت اکسید شناخته شدند . این مواد دیر گداز، اشتعال ناپذیرند ، وبه طور عموم (خاکیها) نامیده شدند. نام این خاکها بر طبق قرارداد به –یاa (ه) – ختم می شدند مانند ایتریاyttria ، استرونیتاstrontia و .. نام فلز مربوط به اکسید را با جانشین کردن m (ه) و به جای a(ه) می ساختند .


دانلود با لینک مستقیم


مقاله درباره روش نامگذاری عناصر شیمیایی

جرم کلاهبرداری و عناصر تشکیل دهنده آن در حقوق ایران - word

اختصاصی از فی لوو جرم کلاهبرداری و عناصر تشکیل دهنده آن در حقوق ایران - word دانلود با لینک مستقیم و پر سرعت .

جرم کلاهبرداری و عناصر تشکیل دهنده آن در حقوق ایران - word


بررسی جرم کلاهبرداری و عناصر تشکیل دهنده آن در حقوق ایران - word

 

 

با فرمت قابل ویرایش word

تعداد صفحات: 87 صفحه

تکه های از عناوین متن :

پیشگفتار

جرم در لغت به معنای «گناه» است. و در اصطلاح قانون مجازات اسلامی «هر فعل یا ترک فعلی که در قانون برای آن مجازات تعیین شده باشد جرم محسوب می‌شود». مطلق ضد مقیّد است.

جرائم از لحاظ لزوم یا عدم لزوم حصول نتایج مجرمانه، به جرائم مطلق و مقیّد تقسیم می‌شوند.

در مقابل جرایم مقیّد، جرائم مطلق قرار دارند. در این جرائم، استثنائاً ارتکاب عمل خاص یا به کار بردن وسیلۀ خاص، صرفنظر از تحقق نتیجه، موجب ارتکاب جرم است؛ مثلاً در قانون جزای فرانسه، سم دادن، یک جرم مطلق است؛ چون در این قانون خوراندن مواد سمّی، صرفنظر از نتایجی که ممکن است از این عمل حاصل شود جرم دانسته شده است.در قانون مجازات اسلامی، ارتشاء یک جرم مطلق دانسته شده، مادۀ «3» قانون تشدید مجازات مرتکبین ارتشاء و اختلاس و کلاهبرداری مصوب مجمع تشخیص مصلحت نظام، هر یک از مستخدمین و مأمورین دولتی اعم از قضائی و اداری یا شوراها یا شهرداری‌ها یا نهادهای انقلابی و به طور کلی قوای سه گانه و همچنین نیروهای مسلح یا شرکتهای دولتی یا سازمان‌های دولتی وابسته به دولت یا مأمورین به خدمات عمومی خواه رسمی یا غیر رسمی برای انجام دادن یا ندادن امری که مربوط به سازمانهای مزبور می‌باشد وجه یا مال یا سند پرداخت وجه یا تسلیم‌ مالی را مستقیماً یا غیر مستقیم قبول نماید در حکم مرتشی است اعم از اینکه امر مذکور مربوط به وظایف آنها بوده یا آنکه مربوط به مأمور دیگری در آن سازمان باشد خواه آن کار را انجام داده یا نداده و انجام آن بر طبق حقانیت و وظیفه بوده یا نبوده باشد و یا آنکه در انجام یا عدم انجام آن مؤثر بوده یا نبوده باشد به ترتیب زیر مجازات می‌شود. به طوری که ملاحظه می‌گردد تعریف ارتشاء، گرفتن وجه مال برای انجام یا عدم انجام امری است. ولی قانونگذار انجام یا عدم انجام آن امر و یا مؤثر واقع شدن یا نشدن در آن امر را مؤثر ندانسته است. همچنین در مورد جعل امضاء یا مهر یا دستخط روسای مملکت و اسکناس داخلی یا خارجی و سکه قلب که صرفنظر از شبیه سازی بدون آنکه همراه با استفاده و ارائه آنها باشد و اعم از اینکه بهره‌‌ای از عمل برده یا ضرری وارد آورده باشد جرم محسوب می‌شود.

مقدمه:

قانون اساسی جمهوری اسلامی ایران در اصول مختلف خود مالکیت مشروع را محترم شمرده است براساس اصل 46 ق ا. هرکسی مالک حاصل کسب و کار مشروع خویش است و هیچ کس نمی تواند به عنوان مالکیت نسبت به کسب و کار خود امکان کسب و کار را از دیگری سلب کند.

ماده 47 ق ا. مالکیت شخصی که از راه مشروع باشد محترم است ضوابط آن را قانون معین می کند.

با عنایت به مالکیت شخصی و احترام به آن افراد در جامعه از یک تضمین برخوردارند یعنی از آنچه در اختیار دارند البته اشیاء و لوازمی که مشروع باشد قانونگذار به آن ارزش گذاشته و هر گونه تصرف و هجوم غیر نسبت به آن را جرم دانسته است و فرد مجرم را مجازات می کند در بحثی که در این تحقیق مورد بررسی است جرم کلاهبرداری است یعنی جرمی که مستقیماً با مال افراد سروکار دارد افراد مجرم از طریق حیله و تقلب و با وسایل متقلبانه اموال مردم را با رضایت خودشان می برند که این افراد کلاهبردار محسوب شده و به کیفر اعمالشان دچار می شوند در ماده(1) قانون تشدید تعریف کلاهبرداری امده است کلاهبرداری از زمره جرائمی است که نوعی اکل مال بباطل محسوب می شود و با توجه به عموم آیه شریفه «ولا تأکلو اموالهم بینکم بالباطل» و با استفاده از عنوان کلی تعزیرات قابل مجازات می باشد در متون فقهی از کلاهبرداری تحت عنوان احتیال و از کلاهبردار به عنوان محتال نام برده شده است.

 

و...........


دانلود با لینک مستقیم


جرم کلاهبرداری و عناصر تشکیل دهنده آن در حقوق ایران - word

دانلود مقاله عناصر و اصطلاحات و مدارهای کوانتومی

اختصاصی از فی لوو دانلود مقاله عناصر و اصطلاحات و مدارهای کوانتومی دانلود با لینک مستقیم و پر سرعت .

 

 

مقدمه :
در این بخش می‌خواهیم درباره اصطلاحات و عناصری که در طراحی الگوریتم‌های کوانتومی لازم هستند، صحبت کنیم اصطلاحاتی چون کیوبیت، ثبت‌کننده‌ها، اعمال کنترل شده حالتهای پایه محاسباتی و … برخی از این عناصر معادل‌های کلاسیکی دارند ولی برخی دیگر مختص جهان کوانتومی بوده و معادل کلاسیکی ندارند.
2-1. بیت‌های کوانتومی و ثبت‌کننده‌ها «Quantum Bit’s and Registers»
bit مفهومی اساسی در فن‌آوری و علم اطلاعات است فلذا بیت‌های کوانتومی که از این به بعد آنها را کیوبیت خواهیم نامید یکی از پایه‌های اساسی Q.C. است. در واقع کیوبیت یک شیء ریاضی با خصوصیتی معین است به بیان دقیقتر یک کیوبیت عبارت از یک بردار واحد در فضای ضرب داخلی دو بعدی است که می‌توانیم آنرا به صورت
{10> 11>} نمایش دهیم. همواره علاقمند هستیم این مفهوم ریاضی را با یک خاصیت فیزیکی قابل لمس نماییم :
فرض کنیم S یک کمیت دوبعدی از یک سیستم کوانتومی با حالتهای متعامد 01> و 11> باشد که این حالتها می‌توانند پایه‌های طبیعی بسط دهنده این سیستم باشند آنگاه یک کیوبیت عبارت است از حالت کوانتومی 1Ø> که :

راههای زیادی برای حقیقت بخشیدن به مفهوم فوق وجود دارد می‌توان حالت 10> را حالت پایه الکترون در اتم هیدروژن و 11> را اولین حالت برانگیخته در نظر گرفت و یا یک سیستم اسپینی که دو حالت اسپین بالا را 10> و اسپین پایین را با 11> نمایش دهیم
تفاوت اساسی بین کلاسیکی و بیت کوانتومی در آن است که یک بیت کلاسیکی یا در حالت 10> است و یا در حالت 11> در حالی که یک کیوبیت می‌تواند هر بر هم نهی خطی از حالتهای 10> و 11> را بپذیرد بنابراین می‌تواند در تعداد غیر قابل شمارشی از حالتها قرار داشته باشد. مفهوم این جمله آن است که ظاهراً می‌توان اطلاعات فوق‌العاده زیادی حتی به صورت نامحدود در یک بیت کوانتومی با انتخاب مطالب α و β جای داد اما عملاً ثابت شده است که بیت کوانتومی می‌تواند فقط در برخی حالتهای محدود قرار داشته باشد مثلاً یک کیوبیت TRINE کیوبیتی است که فقط یکی از سه حالت
و و یا را به خود بگیرد.
می‌توانیم حالت 1Ø> را با استفاده از نمایش هندسی کره بلوخ (Bloch sphere) مناسبتر بنویسیم چون همانگونه که در شکل آمده میتوانیم 2-1 را به صورت زیر بنویسیم :
(2)
که در آن ، ، اعداد حقیقی هستند. عامل فازی مشاهده‌پذیر فیزیکی نیست و لذا می‌توان آنرا حذف کرد و لذا :

 

 

 


2-2 : اندازه‌گیری کیوبیت ها : qubit measuerment
یکی از مشکلات کیوبیت‌ها این است که تمامی آنچه که وارد یک کیوبیت می‌شود، لزوماً همان خارج نمی‌شود. درکل ، برای یک حالت نامعین از یک کیوبیت تک قابل تشخیص نیست و آن توسط یک اندازه‌گیری تصویری کاملاً امکانپذیر نیست. فیزیک کوانتومی قواعد دقیقی مبنی بر چگونگی استخراج اطلاعات استخراج اطلاعات از یک حالت کوانتومی ناشناس دهد. خروجی هر اندازه‌گیری تصویری از یک کیلوبیت ، باید با عبارت کلاسیکی فرمولبندی شود. دقیقتر، می‌توان از هر اندازه‌گیری تصویری یک کیلوبیت، فقط یک بیت کلاسیکی از اطلاعات را تهیه کرد. بنابراین با وجود اینکه یک ارتباطی بین حالتهای کوانتومی ممکن از یک کیوبیت منفرد وجود دارد، ولی این حالتها نمی‌توانند از همدیگر تشخیص داده شوند. هیچ اندازه‌گیری نمی تواند بیشتر ازیک بیت از اطلاعات را از دوکیوبیت داده شده، استخراج بکند. ازدیدگاه اطلاعات، از یک کیوبیت می‌توان توسط یک اندازه‌گیری تصویری دقیق، همان مقدار از اطلاعات کلاسیکی را به اندازه یک بیت کلاسیکی دریافت کرد، حقی دیگر به طور نامحدودی بسیاری از حالتهای بالقوه را داشته باشد.
2-3 : تحول کیوبیت (Qubit evolution) :
هر تحول کوانتومی یک کیوبیت یا هر عمل کوانتومی روی یک کیوبیت توسط یک ماتریس کیانی معین می‌شود :
(4)
که هر حالت کوانتومی را به حالت تبدیل می‌کند.
بعنوان مثال، تحول داده شده توسط ماتریس هادامارد (Hadamard)
(5)
که چرخش هادامارد نامیده می‌شود، حالتهای >10 ، >11 ، >10 و >1 ‌‌ را بصورت زیر تبدیل می‌کند :

که درآن تبدیل یافته ‌هادامارد حالتهای پایه هستند.
همچنین تبدیل ‌هادامارد را می‌توان به صورت نگاشتی ازحالتهای پایه نوشت :
(7)
پایة >}17 ، > 10{ = پایة استاندارد یا پایه محاسباتی نامیده می‌شود، پایه‌های دوتایی یا پایه‌های هادامارد و یا پایه‌های فوریه نامیده می‌شود. می‌توان دید که با بکاربردن H می‌توانیم بین پایه‌های استاندارد و پایه‌های دوتایی ارتباط برقرار کنیم(معادلات 2-6). از تعریف H واضح است که H2=I . همچنین پایه‌هایی را می‌توان در نظر گرفت که پایه‌های قطبش نامیده می‌شوند وتوسط 8 تعریف می‌شوند :
(8)
که از اهمیت خاصی برخوردارند.
اگرحالتهای 0>1 ، 11> نسبت به حالتهای پایه استاندارد اندازه‌گیری شوند. هر دو خروجی – 0 و 1- را با احتمال یکسان 2/1 بدست می‌آیند. عمل H روی حالتهای پایه استاندارد را می‌توان همانند پرتاب یک سکه در نظر گرفت. مثلاً اگر روی شیر سکه به طرف ناظر باشد احتمال اینکه پس از پرتاب شیر یا خط بیاید 2/1 است.
2-4 : ثبت‌کننده‌های کوانتومی (Quantum Registers)
برای معرفی ثبت‌کننده‌های کوانتومی مناسب است با ثبت کننده دوکیوبیتی شروع کنیم.
2-4-1 : ثبت‌کننده دو کیوبیتی
حاصلضرب تانسوری دوکیوبیت را یک ثبت‌کنندة دو کیوبیتی می‌نامیم. فضای هیلبرت متناظر با آن H4 می‌باشد.
معمولاً پایه‌های استاندارد در فضایH4 بصورت زیر نمایش داده می‌شوند :
(9)
بنابراین فرم عمومی یک ثبت‌کننده دو کیوبیتی برابر است با :
(10)
اندازه‌گیری ثبت‌کننده‌های دوکیوبیتی :
اندازه‌گیری حالت نسبت به پایه‌های استاندارد ، خروجی‌های دوبیتی ij را با احتمال بدست می‌دهد و منجر به فرو ریزش به حالت ij> می‌شود.
اغلب لازم است که فقط یک کیوبیت را اندازه‌ بگیریم. این مطلب می‌تواند برای استفاده مشاهده پذیر انجام بگیرد :
درمورد کیوبیت اول
در مورد کیوبیت دوم
که ، 1و0 = I زیر فضای استاندارد با بردارهای ، زیر فضای استاندارد با بردارهای i>} ، i>10{ نامیده می‌شود.
بنابراین اگر کیوبیت اول اندازه‌گیری شود، خروجی حاصل بیتO با احتمال خواهد بود. و حالت پس از اندازه‌گیری عبارتست از :
(11)
توجه کنید که حالت پس از تصویر شدن بهنجار شده است. به روشی مشابه آنچه گذشت می‌توانیم خروجی 1 را با اندازه‌گیری کیوبیت دوم با احتمال و حالت مربوطه بدست بیاوریم.
تحول کوانتومی دو کیوبیتی :
از تبدیلات یکانی که روی حالتهای دوکیوبیتی اثر میکنند تبدیل زیر از اهمیت ویژه‌ای برخوردار است :
(12)
که نمایش ماتریسی آن بصورت زیر می‌باشد.
(13)
ماتریس XOR نگاشتی همانند گیت Controlled Not یا به اختصار CNOT را ایجاد می‌کند.
2-4-2 : ثبت‌کنندة n- کیوبیتی :
براحتی می توان ثبت‌کننده‌های –nکیوبیتی را از تعمیم ثبت‌کنندة 2- کیوبیتی تعریف کرد :
برای ثبت‌کننده‌های –n کیوبیتی در فضای هیلبوت n2- بعدسی کار میکنیم که مجموعه زیر بردارهای پایه این فضا می‌باشند.
(14)
بردارهای i> 1 را بردارهای استاندارد یا پایه‌های محاسباتی می‌نامیم.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  12  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله عناصر و اصطلاحات و مدارهای کوانتومی

تحقیق ثیر عناصر سنگین بر تغذیه

اختصاصی از فی لوو تحقیق ثیر عناصر سنگین بر تغذیه دانلود با لینک مستقیم و پر سرعت .

تحقیق ثیر عناصر سنگین بر تغذیه


تحقیق ثیر عناصر سنگین بر تغذیه

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)


تعداد صفحه:37

فهرست:

ناباروری 

ریزش مو و خرابی پوست

اختلالات ذهنی

سقط جنین و نقص عضو مادرزادی

40 میلی گرم که در زنان باردار و شیر ده افزایش می یابد وتا حدود 100-60 میلی گرم توصیه می شود.

 

منابع :

 

   فندق ، گردو، توت فرنگی ، انجیر ، گوشت ، جگر، اسفناج و میوه های خشک شده 


دانلود با لینک مستقیم


تحقیق ثیر عناصر سنگین بر تغذیه

دانلود مقاله کاربرد رادیو ایزوتوپ ها ( عناصر رادیواکتیو ) در پزشکی

اختصاصی از فی لوو دانلود مقاله کاربرد رادیو ایزوتوپ ها ( عناصر رادیواکتیو ) در پزشکی دانلود با لینک مستقیم و پر سرعت .

 

 

 

 

کاربرد رادیو ایزوتوپ ها ( عناصر رادیواکتیو ) در پزشکی

 


در پزشکی کاربرد رادیو ایزوتوپ ها ( اتم های یک عنصر را که عدد اتمی یکسان و عدد جرمی متفاوت دارند ، ایزوتوپ های آن عنصر می نامند ــــ بارهای مثبت که همان تعداد پروتون ها می باشند را عدد اتمی و مجموع تعداد پروتون ها و نوترون های هسته یک اتم را عدد جرمی آن می گویند ) در سه زمینه متمرکز است که عبارتند از تشخیص ، درمان و تحقیق
به عنوان مثال P ( با عدد جرمی 32 یک گسیلنده بتا با نیمه عمر 3/14 روز ) برای درمان یک نوع بیماری خونی ( Polycythema ) به کار می رود . این عنصر پس از تغذیه توسط بیـــمار ، در مغز استخوان جمع می شود و تولید سلولهای قرمز خون را کند می کند و به این ترتیب در درمان برخی بیماری های خونی موثر است.
PU ( با عدد جرمی 238 ) در ساخت تنظیم کننده قلب ( گام ساز Pacemaker ) در صنعت پزشکی کاربرد دارد. در یک قلب سالم انقباض قلب با یک پالس الکتروشیمیایی شروع می شود . انقباض از گره سینوس ( Sinus Node ) نزدیک به قسمت فوقانی قلب شروع می شود و به طرف پایین گسترش می یابد. در بعضی اشخاص به دلایل مختلف ، قلب به طور همزمان با پالس گره سینوس نمی زند و به همین علت یک تنظیم کننده قلب یا گام ساز که در زیر پوست کار گذارده می شود ، قلب را تحریک می کند.
برای درمان بعضی از سرطان ها AU ( با عدد جرمی 198 یک گسیلنده گاما با نیمه عمر 7 / 2 روز ) را به طور فیزیکی در داخل سلول های بیمار کار می گذارند . اشعه گاما سلول ها را از بین می برد و به تدریج فعالیت این طلای پرتوزا به یک سطح قابل چشم پوشی می رسد.
کاربرد ردیاب ها نیز در اکثر موارد بسیار حائز اهمیـت است . مثلا مقدار کمـــــی از NaCl شامـــــل Na ( با عدد جرمی 24 و نیمه عمر 15 ساعت ) به داخل خون تزریق می شود . با تعقیب انباشت پرتوزایی با یک شمارشگر گایگر ، گردش خون را می توان زیر نظر گرفت . اگر مانعی سر راه جریان وجود داشته باشد ، ممکن است اکتیویته شدیدا در محل مانع کاهش یابد و به این وسیله می توان محل دقیق آن را تعیین کرد.
Tc ( با عدد جرمی 99 و عدد اتمی 43 یک گسیلنده بتا ) و Ga ( با عدد جرمی 67 و عدد اتمی 31 ) برای آشکار سازی بعضی از انواع غده های مغزی به کار رفته اند .عناصر پرتوزا بعضی از انواع غده ها را از نظر جذب ترجیح می دهند و جذب آنها می شوند . با ردیابی این جذب از خارج ، محل و نوع غده را اکثرا می توان تشخیص داد.
رادیوداروها و چشمه های رادیواکتیو برای پزشکی هسته ای
سودمندترین رادیو ایزوتوپها در پزشکی هسته ای رادیوایزوتوپهای تابش کننده گاما می باشند ،زیرا پرتوهای تابش شده از این مواد در درون بدن را می توان از بیرون بدن به سادگی تشخیص داد.
اندازه های کاربردی مواد رادیواکتیو در روشهای تشخیص از دید جرم بسیار اندک است - نزدیک به میکروگرم - بگونه ایکه این مواد بر روند کارهای فیزیولوژیک بدن اثری ندارند.
رادیوایزوتوپها بیشتر به گونه ترکیبی ، وارد بدن می شوند. ترکیب های یاد شده مولکولهای نشاندار هستند. یک مولکول نشاندار مولکولی است که یک یا چند اتم آن رادیواکتیو باشد.
ترکیبات رادیواکتیو، داروهای رادیواکتیو یا رادیوداروها باید از استانداردهای ویژه خالص بودن شیمیایی و دارویی برخوردار باشد. بیشتر رادیوداروهای پزشکی هسته ای از شرکتهای بازرگانی دارویی که چگونگی ویژگیهای رادیوداروها را کنترل می کنند خریداری می شوند. تنها کاری که پزشک یا کاربر باید انجام دهد بکارگیری جدولی برای تعیین اندازه دگرگون شده این رادیوداروها از زمان آخرین اندازه گیری اکتیویته آنهاست.
برای نشاندار کردن مولکولها شماری از رادیوایزوتوپها بکار برده می شود. این رادیوایزوتوپها بیشتر تابش کننده های گاما و دارای ویژگیهای گوناگون فیزیکی هستند. نمونه این رادیوایزوتوپها رادیوایزوتوپهای 53I , 43Tc , 79Au , 15P , 31Ga و 000 می باشند که به راههای گوناگون تهیه می شوند.
البته باید یادآوری کرد که رادیوایزوتوپهای مناسبی از عنصرهای کلیدی هیدروژن و اکسیژن و کربن وجود ندارد، ولی امروزه با به کارگیری شتابنده هایی مانند سیکلوترون در بیمارستانهای پیشرفته ،برخی از سختی های کار از میان برداشته شده است. برای نمونه رادیوایزوتوپهایی را - در جایگاه مصرف - تولید می کنند که نیم عمر چند دقیقه ای دارند .نمونه این رادیوایزوتوپها Ga , Fe , F , O می باشد. O با نیم عمر دو دقیقه ای به سرعت جذب بدن می شود و در همین زمان کوتاه می توان بررسیهای دقیق فیزیولوژیک انجام داد. شماری از رادیوایزوتوپهای کاربردی در پزشکی از ژنراتورهایی بدست می آیند که درباره آنها بیشتر گفتگو خواهد شد.
رادیوایزوتوپهای مورد استفاده در کارهای تشخیصی باید تابش کننده گاما بوده - گاهی پوزیترون بکار می رود - و نیم عمر مناسب کارتشخیصی را داشته باشند.
از با ارزش ترین رادیوایزوتوپها در کار تشخیص ، Tc است که شمار فراوانی از ترکیب های شیمیایی کاربردی را با آن نشاندار می کنند. تکنسیم بصورت پرتکنتات سدیم ( NaTco12 ) برای نشاندار کردن بکار می رود. درتهیه این مولکولها در آغاز پرتکنتات به یون Tc کاهش داده شده و سپس آنرا با ماده شیمیایی دلخواه بصورت کمپلکس در می آورند. ماده شیمیایی آْماده است و تنها باید پرتکنتات بگونه ای استریل و بدون پیروژن به آن افزوده شود و پس از چند دقیقه ترکیب برای کاربری آماده است. راندمان این فرایند شیمیایی به 90 درصد می رسد و باقیمانده ترکیب نشده به گونه ناخالصی درترکیب وجود خواهد داشت.
به علت تابش شدید پرتو در ترکیب ،ترکیب های یاد شده می توانند دی ناتوره شوند از این رو ترکیب بدست آمده باید در همان روز بکار برده شود و اگر اجبار در نگهداری آنها وجود داشته باشد، باید با افزودن نگهدارنده های مناسب در دمای پایین نگهداری شوند.
رادیوایزوتوپهای پرکابرد پزشکی بیشتر از ژنراتورها بدست می آیند. دو رادیوایزوتوپ بسیار پرکاربرد برای کارهای تشخیصی و درمانی رادیوایزوتوپهای Tc و I می باشند. نیم عمر 8 روزه I اجازه می دهد که آن را به جاهای دور دست انتقال دهند. این رادیو دارو در درمان سرطان تیروئید و همچنین کنترل پرکاری آن نقش اساسی دارد.
تکنیسم با نیم عمر 6 ساعته اجازه می دهد که بیشتر کارهای تشخیصی به آسانی انجام پذیرد.
رادیوایزوتوپ ها ( عناصر رادیواکتیو ) در پزشکی
رادیو ایزوتوپ ها چیستند؟
بسیاری از عناصر شیمیایی دارای ایزوتوپ هستند. ایزوتوپ یک عنصر با خود عنصر دارای پروتون های برابری است (برابر با عدد اتمی) اما تفاوتشان در تعداد نوترون هاست. در یک اتم ، در حالت طبیعی، تعداد الکترون های خارجی برابر عدد اتمی است. این الکترون ها برای معادلات شیمیایی به کار می روند. جرم اتمی هم مجموع پروتون ها و نوترون هاست. 82 عنصر پایدار و 275 ایزوتوپ پایدار مربوط به این عناصر نیز وجود دارد.
وقتی ترکبی از نوترون ها و پروتون ها بوجود آید که در قبلا در طبیعت وجود نداشته اند ، این محصول مصنوعی خواهد بود و غیر پایدار است و به آن ایزوتوپ رادیو اکتیو یا رادیوایزوتوپ نامیده می شود. همچنین بسیاری از ایزوتوپ های طبیعی غیر پایدار، از واپاشی بسیار کهن اورانیوم و توریوم ناشی می شود. کلا حدود 1800 رادیو ایزوتوپ وجود دارد.

 

هم اکنون 200 رادیو ایزوتوپ در حال استفاده است که برخی از آنها باید به طور مصنوعی تولید شوند.
رادیو ایزوتوپ ها را می توان به روش های گوناگونی تولید کرد.البته غالبا بوسیلۀ گیر انداری نوترون در راکتور اکتیو می شوند. برخی نیز توسط سیکلوترون تولید می شوند که در این روش پروتون به هسته القا شده و هسته دارای پروتون اضافی می شود.
هسته های رادیو ایزوتوپ معمولا با انتشار ذرات آلفا یا (و) بتا به حالت پایدار می رسند. که می تواند با انتشار اشعه گاما همراه باشد. این فرایند واپاشی رادیو اکتیو نام دارد.
رادیو ایزوتوپ هایی که در پرتو پزشکی به کار می روند ، "رادیو دارو" نام دارند.
پزشکی هسته ای
یک شاخه از پزشکی است که از تشعشع برای تشخیص و درمان بیماری استفاده می کند. تیرویید، ریه، استخوان و قلب و بسیاری از دیگر اعضای بدن، براحتی قابل عکسبرداری هستند و بی نظمی در آنها قابل آشکارسازی است. پنج جایزۀ نوبل به کسانی داده شده که از مواد رادیواکتیو در عکسبرداری استفاده کرده اند.
در کشورهای پیشرفته (26% جمعیت جهان) فراوانی تشخیص بوسیلۀ پرتو پزشکی 1.9% در سال است. همچنین درمان بوسیلۀ رادیو ایزوتوپ ها حدود یک دهم این مقدار است. استفاده از رادیو دارو ها در حال افزایش به مقدار 10% در سال است.
پزشکی هسته ای در سال 1950 بوسیلۀ پزشکانی توسعه یافت که از ید 131 برای تشخیص بیماری تیرویید استفاده کردند.
تشخیص
روشهای تشخیصی در پزشکی هسته ای، از تصویر گرهای رادیو اکتیوی استفاده می کنند که منتشر کنندۀ گاما از داخل بدن هستند. این تصویرگر ها عموما رادیو ایزوتوپ های کوتاه عمری هستند که به ترکیبات شیمیایی متصل شده اند. آن ها از طریق تزریق، استنشاقی یا خوراکی قابل انتقال به بدن هستند. بوسیلۀ گاما های انتشار یافته از داخل بدن می توان تصاویری را از زاویه های مختلف داخل بدن به دست آورد که می تواند بافتهای غیر عادی را مشخص کند. این تصاویر بوسیلۀ کامپیوتر قابل بهینه سازی هستند.
یکی از جدیدترین این تصویربرداری ها PET می باشد. (برای توضیح بیشتر کلیک کنید)
درمان
آسیب زدن به تقسیم بندی سریع سلول ها بوسیله تشعشع دارای اهمیت بالایی برخوردار است. از همین طریق، رشد برخی سرطان ها را می توان کنترل کرد. پرتو افکنی خارجی به وسیلۀ اشعه گاما ،که از کبالت 60 منتشر می شود، همچنین شتابدهندۀ خطی اشعه X ، می توانند این کار را انجام دهند.

 

پرتو دهی داخلی بوسیلۀ اشعه گاما و ذره بتا ، نیز قابل انجام است. ید 131 معمولا برای درمان سرطان تیرویید استفاده می شود ، که شاید موفق ترین درمان سرطان باشد. همچنین از آن برای درمان اختلالات غیر بدخیم تیرویید نیز استفاده می شود. ایریدیوم 192 بطور ویژه در سر و سینه(پستان) مورد استفاده قرار می گیرد. آنها بشکل سیم درست شده و به قسمت مورد نظر بدن وارد می شود. پس از رسیدن به دوز مورد نظر ، باید سیم ها از بدن خارج شوند. این براچی تراپی (brachytherapy) (روشی که در آن ماده رادیو اکتیو مستقیما در بدن قرار می گیرد) در کل دوز کمی را به کل بدن منتقل می کند و دارای قیمت پایینی است.
برای درمان لوکمیا (leukaemia) (نوعی سرطان مغز استخوان) بوسیلۀ کشت مغز استخوان ، باید سلول های معیوب بوسیله تابش دهی رادیو اکتیو نابود شوند تا بتوان مغز استوان سالم را جایگزین آن کرد.
بسیاری از درمان ها مسکن هستند. برای مثال، استرانسیوم 89 و بیشتر از آن ساماریوم 153 برای تسکن درد استخوان ناشی از سرطان به کار می روند. رنیوم 186 نیز محصولی جدید برای این هدف است.
یک روش جدید TAT نام دارد که مخفف Targeted Alpha Theray است به معنی آلفا تراپی هدفمند است. این روش برای سرطان های پراکنده به کار می رود. تابش مقداری کم از آلفا های پر انرژی به بافت ، سبب می شود که کسر عظیمی از انرژی تابشی به هدف برخورد کند. یک حامل رادیو نوکلئید های منتشر کنندۀ آلفا را به مکان مورد نظر منتقل می کند. تحقیقات آزمایشگاهی افق های جدیدی را برای درمان لوکمیا ، تومور های مغزی و سرطان پوست روشن می سازد.
یک پیشرفت تجربی در این زمینه Boron Neutron Capture Therapy(درمان بوسیله گیر اندازی نوترون توسط بور) بوسیله بور 10 است که در تومور بدخیم مغزی متمرکز می شود. بعد بیمار بوسیلۀ نوترون حرارتی مورد تابش قرار می گیرد که شدیدا بوسیلۀ بور جذب می شود و ذرات آلفای پر انرژی را برای کشتن سلول های سرطانی آزاد می کند. در این روش به جای آنکه رادیو ایزوتوپ به مریض داده شود، مریض در معرض نوترون ها قرار می گیرد.
پرتو درمانی در درمان بیماری های سمج و ماندگار موفق عمل کرده و درضمن دارای عوارض جانبی کمی است. دوز تابشی به میزان هر درمان ، 20 تا 60 گری است.
تحلیل بیوشیمیایی
آشکار سازی و تشخیص مواد رادیو اکتیو کار ساده ایست حتی اگر مقدار آن کم باشد. به همین دلیل می توان مولکول موارد بیولوژیکی را در خارج از بدن (In Vitro) بوسیله رادیوایزوتوپ ها نشانگذاری کرد. پاتولوژیست ها صدها آزمایش را برای تعیین اجزای خون، پلاسما، ادرار، هورمون ها، آنتی ژن ها و بسیاری دیگر را با استفاده از رادیوایزوتوپ ها به کار برده اند. این روش به Radioimmuno موسوم است.

 

رادیو دارو های تشخیصی
از نقطه نظر شیمیایی ، هر عضو بدن عملکردی متفاوت با بقیه دارد. پزشکان و شیمی دان ها ، مقداری از مواد شیمیایی را که توسط اعضای بدن جذب می شود را مشخص کرده اند. مثلا تیرویید ید را جذب می کند ، مغز برخی قندها را مصرف می کند. با این دانش پرتو پزشکان مواد رادیو ایزوتوپ را به مواد بیولوژیکی مختلف می چسبانند.
پرتو پزشکی تشخیصی می تواند برای اندازه گیری میزان خون شارش یافته به مغز مورد استفاده قرار گیرد. همچنین برای بررسی عملکرد کبد، ریه، قلب، کلیه ها و دستیابی به مغز استخوان و اقدامات تشخیصی مشابه مورد استفاده قرار می گیرد. یکی از کاربردهای دیگر پیش بینی اثرات درمان است.
مقدار ماده رادیو اکتیو رسیده به بدن برای تشخیص ناچیز است. مریض در قبل و بعد از آزمایش چیز ناخوشایندی را احساس نمی کند و اثرات باقیمانده از ماده در مدت کوتاهی از بین می رود. غیر تهاجمی بودن آزمایش، طبیعت این روش است که می توان از خارج بدن به آزمایش بدن پرداخت.
رادیوایزوتوپی که برای تشخیص و آزمایش به کار می رود باید منتشر کنندۀ گاما باشد تا در هنگام خارج شدن از بدن، داخل را به ما نشان دهد. همچنین باید دارای نیمه عمر کوتاهی باشد تا زیاد در بدن باقی نماند.
رادیوایزوتوپی که به کرات استفاده می شود تکنسیوم 99m می باشد که در 80% پرتوپزشکی ها مورد استفاده قرار می گیرد. حدود 40000 بار در روز. تکنسیوم 99m به دلایل زیر برای مصارف پرتو پزشکی رادیو نوکلئید خوبی است:
_ نیمه عمری حدود 6 ساعت دارد و در عین حال که زمانی طولانی برای بررسی فرایند های متابولیکی است، زمان کوتاهی برای به حداقل رسانی تابش به بدن است.
_ تکنسیوم 99m بوسیلۀ فرایندی که "ایزومریک" نامیده می شود واپاشی می شود که گاما های کم انرژی و الکترون منتشر می کند. تا زمانی که انرژی پرتو بتا بالا نباشد برای بدن زیان آور نیست.
_ اشعۀ گامای کم انرژیی که از بدن خارج می شود به راحتی توسط دوربین ها (آشکارسازها) آشکارسازی می شوند.
"ژنراتور" تکنسیوم که یک محفظه سربی است که لوله ای شیشه ای محتوی رادیو ایزوتوپ را پوشانده است ، برای بیمارستان ساخته شده است و محتوی مولبدیوم 99 با نیمه عمر 66 ساعت است که تدریجا به تکنسیوم 99 واپاشی می شود. Tc-99 وقتی که لازم باشد شسته و تصفیه می شود. بعد از دو هفته یا کمتر ژنراتور برای شارژ مجدد بازگردانده می شود.
از ژنراتوری مشابه برای تولید روبدیوم 82 استفاده می شود که در عکسبرداری PET استرانسیوم 82 با نیمه عمر 25 روز به کار می رود.
از عکسبرداری MPI (Myocardial Perfusion Imaging) با کلرید تالیوم 201 یا تکنسیوم 99m برای تشخیص و پیش بینی بیماری های شریان کرونر قلب استفاده می کند.
برای عکسبرداری PET اصلی ترین رادیو دارو فلور دی اکسی گلوکوز (FDG) نام دارد. F-18 با نیمه عمر کمتر از دو ساعت ، به عنوان نشانگر استفاده می شود. FDG بدون اینکه نابود شود با سلول ها ترکیب می شود که نمایانگر خوبی برای متابولیسم سلول است.
در دارو های تشخیصی ، تمایل زیادی برای استفاده از ایزوتوپ های تولید شده توسط سیکلوترون ، مثل F-18 وجود دارد که استفاده وسیعی در PET و CT/PET دارد. این فرایند در عرض دو ساعت در سیکلوترون انجام می شود.
رادیو دارو های درمانی
در برخی شرایط درمانی، برای نابودی و یا ضعیف کردن سلول های غیر عادی پرتو درمانی مفید است. رادیو ایزوتوپی که پرتو را تولید می کند می تواند در عضو مورد نظر جاگذاری شود (مشابه همان روشی که برای تشخیص به کار می رفت). در بسیاری موارد ، اشعه بتا است که باعث نابودی سلول های نامطلوب می شود. این رادیو تراپی است. رادیوتراپی کوتاه مدت ، به براچی تراپی معروف است و در حال تبدیل شدن به اصلی ترین روش درمانی است.
هرچند، کاربرد درمانی مواد رادیو اکتیو کمتر از کاربرد تشخیصی است ، هر چند که توسعۀ آن مهم و در حال رشد است. یک رادیوداروی ایده آل یک منتشر کنندۀ بتای قوی و همچنین گامای کافی برای عکسبرداری باید باشد ، مثل لوتیسم 177 که از ایتربیوم-176 (Yb) ساخته می شود که خود ایتربیوم-176 با تشعشع زایی به ایتربیوم-177 و فورا به لوتیسم-177 (Lu-177) تبدیل می شود. ایتریوم-90 (Y-90) نیز برای درمان برخی سرطان های دستگاه لنفاوی و استفاده از آن برای درمان آرتروز نیز در حال گسترش است.
ید-131 و فسفر-32 نیز برای درمان استفاده می شوند. ید-131 برای درمان تیرویید که دچار سرطان یا شرایط غیر عادی مثل پرکاری تیرویید شده باشد، بکار می رود. در بیماری پریاخته خونی که تعداد گولبول های قرمز خون تولیدی توسط مغز استخوان بالا می رود، از فسفر-32 برای جلوگیری از این ازدیاد استفاده می شود.در یک روش جدید (و هنوز آزمایشی) از بور-10 استفاده می کند که در تومور متمرکز می شود. بعد، بدن بیمار توسط نوترون مورد تابش قرار می گیرد و بور که دارای سطح مقطع جذب نوترون بالایی است ، آلفاهای پر انرژی را برای کشتن سلول های سرطانی منتشر می کند.
برای TAT ، اکتانیوم-225 با انتشار 3 ذرۀ آلفا به دخترش بیسموت-213 تبدیل می شود که برای نشانگذاری مولکول های هدف به کار می رود.
تحقیقات پزشکی مهم در سرتاسر جهان برای چسباندن رادیو نوکلیید ها به مواد شیمیای بیولوژیکی مثل آنتی بادی ها، انجام گرفته است. نشانگذاری سلول ها می تواند برای درمان انواع بیماری ها مورد استفاده قرار گیرد.
مسمومیت رادیوایزوتوپ
در سال 2006 در بریتانیا ، یک شهروند جدید که قبلا عضو سازمان اطلاعات روسیه بود ، توسط پلونیوم مسموم شده و کشته شده بود. که مرگی طولانی مدت و دردآور است.
پلونیوم دارای 26 ایزوتوپ است ، که همگی رادیو اکتیو هستند. که 250 میلیارد برابر سمی تر از اسید هیدروسیانیک است و در یک اسید رقیق قابل حل است. (این اولین عنصری است که توسط ماری کوری در سال 1898 کشف شد و به نام کشورش یعنی Poland (لهستان) نامگذاری کرد. ایرن ،دختر او، توسط همین پلونیوم در یک حادثه آزمایشگاهی مسموم شد و در سن 59 سالگی با بیماری سرطان خون درگذشت)
پلونیوم-210 محصول یکی مانده به آخر واپاشی U-238 است ، قبل از آنکه با واپاشی آلفا به سرب تبدیل شود(به حالت پایدار برسد). این ناشی از واپاشی بتای Pb-210 (در سری واپاشی U-238 ) به Bi-210 که به سرعت با واپاشی بتا به Po-210 تبدیل می شود. این در هرجای طبیعت که اورانیوم موجود باشد رخ می دهد. به هر حال به خاطر نیمه عمر کوتاهش(138 روز) مقدار کمی Po-210 در اورانیوم وجود دارد (در حدود 0.1mg/tonne ). مقدار Po-210 در خاک حتی کمتر از این مقدار است اما در تنباکو مقدارش بیشتر است و اثرات آن را می توان در ادرار برخی افراد سیگاری مشاهده کرد.
Po-210 را همچنین بوسیلۀ در معرض تابش نوترون قرار دادن Bi-209 می توان بدست آورد. روسیه از Po-210 بعنوان منبع حرارتی در فضاپیما های با عمر کوتاه و قمرهای مصنوعی استفاده کرده است. همچنین می تواند راکتورهای با سیستم خنک کنندگی سرب-بیسموت را به کار بیندازد. که در اثر بمباران نوترونی، با Po-210 آلوده شده باشد.
به خاطر نیمه عمر کوتاهش، یک گرم Po-210 حدود 5000 بار رادیواکتیو تر از رادیوم است. اما 138 روز زمان به اندازه کافی طولانیی برای تولید و انتقال و توزیع آن می باشد، پیش از آنکه توانش کم شود. همچنین به حاملش خطرات چندانی را انتقال نمی دهد، چون اشعه آلفا در داخل بدن خطرناک است و در بیرون از بدن، پوست نیز می تواند از ورود آن جلوگیری کند.
بهر حال، دوز های معمولی در صورتی که از طریق روده جذب بدن نشود و یکی دو روز بیشتر طول نکشد ، اثری بر بدن حامل آن نخواهد داشت. در برخی روش ها مثل TAT که از میزان پایین آلفا استفاده می شود، باید در یکی از ترکیبات بیولوژیکی بدن حل شده و توسط این ترکیبات به بافت های سرطانی برسد.
در مورد آقای لیتویننکو (جاسوس روسی) شدت ذرات آلفا بسیار بالا بود و مدت سه هفته برای از پا در آوردن او کافی بود. این مقدار صد برابر دوزی است که در TAT است ، همچنین نیمه عمر Po-210 خیلی طولانی تر از موادی است که در TAT استفاده می شود.

ضایعات
رادیو ایزوتوپهایی که در پزشکی برای تشخیص و درمان به کار می روند، در اصل دارای ضایعات کمی هستند یا در اصطلاح به LLW معروفند. این ضایعات شامل کاغذ، لباس ها، ابزار و فیلتر ها که دارای رادیواکتیو اضافی هستند ، می شود. اکثر این مواد در طول چند ماه یا چند سال ، در اثر واپاشی از بین می روند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  36  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله کاربرد رادیو ایزوتوپ ها ( عناصر رادیواکتیو ) در پزشکی