فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق آب سنگین

اختصاصی از فی لوو دانلود تحقیق آب سنگین دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق آب سنگین


دانلود تحقیق آب سنگین

آب سنگین آبی است که نسبت ایزوتوپ دوتریوم در آن از حد آب معمولی بیشتر است. در آب سنگین (با فرمول D۲O) بر خلاف آب معمولی (با فرمول H۲O) به جای هیدروژن ایزوتوپ هیدروژن دوتریم با اکسیژن ترکیب شده است.

تاریخچه

هارولد یوری شیمیدان و از پیشتازان فعالیت روی ایزوتوپها که در سال 1934 جایزه نوبل در شیمی گرفت در سال 1931 ایزوتوپ هیدروژن سنگین را که بعد ها به منظور افزایش غلظت آب مورد استفاده قرار گرفت، کشف کرد.

همچنین در سال 1933، گیلبرت نیوتن لوئیس (Gilbert Newton Lewis شیمیدان و فیزیکدان مشهور آمریکایی) استاد هارولد یوری توانست برای اولین بار نمونه آب سنگین خالص را بوسیله عمل الکترولیز بوجود آورد.

اولین کاربرد علمی از آب سنگین در سال در سال 1934 توسط دو بیولوژیست بنامهای هوسی (Hevesy) و هافر(Hoffer) صورت گرفت. آنها از آب سنگین برای آزمایش ردیابی بیولوژیکی، به منظور تخمین میزان بازدهی آب در بدن انسان، استفاده قرار دادند.


آب نیمه سنگین

چنانچه در اکسید هیدروژن تنها یکی از اتمهای هیدروژن به ایزوتوپ دوتریوم تبدیل شود نتیجه حاصله (HDO) را آب نیمه سنگین می گویند. در مواردی که ترکیب مساوی از هیدروژن و دوتریوم در تشکیل مولکوهای آب حضور داشته باشند، آب نیمه سنگین تهیه می شود.

معایب آب سنگین

آب سخـت آبـی اسـت کـه حـاوی گـچ، آهـک و دیــگر املاح محلول می بـاشـد. در آب سـخـت سـطـــح  برخی از املاح مـعـدنی مـحـلـول  در آب بیـشـــتر است. این املاح معدنی عمدتا شامل کربنات کلسیم و کربنات منیزیم می باشند.

اما املاحی مانند بی کربناتها، سولفاتها و سیلیکات ها و هــمچنین آهن و منگنز را نیز در برمیگیرد. با آنکه نوشیدن آب سـخـت مشـکل خـاصـی بـرای سـلامـتـی شـما ایجاد نمی کنـد .

شامل 17 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق آب سنگین

تحقیق فلزات سنگین در کشاورزی و محیط‌زیست جیوه

اختصاصی از فی لوو تحقیق فلزات سنگین در کشاورزی و محیط‌زیست جیوه دانلود با لینک مستقیم و پر سرعت .

تحقیق فلزات سنگین در کشاورزی و محیط‌زیست جیوه


تحقیق  فلزات سنگین در کشاورزی و محیط‌زیست جیوه منشأ اصلی جیوه، سوخت ذغال‌سنگ و نفت و مشتقات آن بوده، تخریب فیزیکی و شیمیائی سنگ‌ها، سالانه در حدود ۲۳۰تُن جیوه به دریاها و اقیانوس‌ها می‌افزاید.
مشخصات عمومی
منابع (استحصال)
اثر جیوه در گیاه
اثر جیوه بر حیوانات
اثرات فیزیولوژیکی جیوه
تعداد صفحه 6

دانلود با لینک مستقیم


تحقیق فلزات سنگین در کشاورزی و محیط‌زیست جیوه

بررسی الودگی فلزات سنگین در رسوبات رودخانه

اختصاصی از فی لوو بررسی الودگی فلزات سنگین در رسوبات رودخانه دانلود با لینک مستقیم و پر سرعت .

بررسی الودگی فلزات سنگین در رسوبات رودخانه


بررسی الودگی فلزات سنگین در رسوبات رودخانه نویسند‌گان: عاطفه بوستانی ، سارا عباسی ، فاطمه امیری باغبادرانی
خلاصه مقاله:
ازانجایی که منابع تولید فلزات سنگین و راههای ورودی آن ها به طبیعت بسیار فراوان است و این فلزات قابلیت ورود به زنجیره های غذایی و تجمع در بافت های زیستی را دارند نگرانی در مورد اثار فلزات سنگین به عنوان الاینده های زیست محیطی به شدت افزایش یافته است محیطهای ابی اخرین و مهمترین مقصد نهایی الایند ه ها در محیط زیست می باشند لذا مطالعات ژئوشیمیایی رسوبات پیکره های ابی مانند رودخانه ها، مصب ها و بستر دریاها، می تواند گام موثری برای یافتن منشا رسوبات الگوی پراکنش عناصر و ارزشیابی محیط زیستی و ضعیت موجود در یک منطقه باشد دراین مطالعه سعی بر این بود که با مطالعه ی کتابخانه ای و جمع اوری اطلاعات از مقالات علمی معتبر اینترنتی با استفاده از منابع موجود ودر دسترس روشهای مورد استفاده در زمینه ی بررسی رسوبات و اندازه گیری میزان فلزات سنگین در این رسوبات به صورت اجمالی ارائه شود.
کلمات کلیدی: الودگی فلزات سنگین، رسوبات رودخانه ای

دانلود با لینک مستقیم


بررسی الودگی فلزات سنگین در رسوبات رودخانه

دانلود مقاله آب سنگین

اختصاصی از فی لوو دانلود مقاله آب سنگین دانلود با لینک مستقیم و پر سرعت .

 

 

آب سنگین آبی است که نسبت ایزوتوپ دوتریوم در آن از حد آب معمولی بیشتر است. در آب سنگین (با فرمول D۲O) بر خلاف آب معمولی (با فرمول H۲O) به جای هیدروژن ایزوتوپ هیدروژن دوتریم با اکسیژن ترکیب شده است.
تاریخچه
هارولد یوری شیمیدان و از پیشتازان فعالیت روی ایزوتوپها که در سال 1934 جایزه نوبل در شیمی گرفت در سال 1931 ایزوتوپ هیدروژن سنگین را که بعد ها به منظور افزایش غلظت آب مورد استفاده قرار گرفت، کشف کرد.
همچنین در سال 1933، گیلبرت نیوتن لوئیس (Gilbert Newton Lewis شیمیدان و فیزیکدان مشهور آمریکایی) استاد هارولد یوری توانست برای اولین بار نمونه آب سنگین خالص را بوسیله عمل الکترولیز بوجود آورد.
اولین کاربرد علمی از آب سنگین در سال در سال 1934 توسط دو بیولوژیست بنامهای هوسی (Hevesy) و هافر(Hoffer) صورت گرفت. آنها از آب سنگین برای آزمایش ردیابی بیولوژیکی، به منظور تخمین میزان بازدهی آب در بدن انسان، استفاده قرار دادند.

آب نیمه سنگین
چنانچه در اکسید هیدروژن تنها یکی از اتمهای هیدروژن به ایزوتوپ دوتریوم تبدیل شود نتیجه حاصله (HDO) را آب نیمه سنگین می گویند. در مواردی که ترکیب مساوی از هیدروژن و دوتریوم در تشکیل مولکوهای آب حضور داشته باشند، آب نیمه سنگین تهیه می شود.
معایب آب سنگین
آب سخـت آبـی اسـت کـه حـاوی گـچ، آهـک و دیــگر املاح محلول می بـاشـد. در آب سـخـت سـطـــح برخی از املاح مـعـدنی مـحـلـول در آب بیـشـــتر است. این املاح معدنی عمدتا شامل کربنات کلسیم و کربنات منیزیم می باشند.
اما املاحی مانند بی کربناتها، سولفاتها و سیلیکات ها و هــمچنین آهن و منگنز را نیز در برمیگیرد. با آنکه نوشیدن آب سـخـت مشـکل خـاصـی بـرای سـلامـتـی شـما ایجاد نمی کنـد .
(جـز آنـکه میتواند تشکیل سنگ کلیه را افزایش دهـد) چــه بسا ممکن است در برخی موارد مزیتهایی نیز داشـتــه باشد .
(مثلا شکستگی استخوانها سریعتر جوش می خـورند و یا خوردگی را در لوله ها به حداقل میرساند)
امــا مصرف آب سخت مضرات بسیاری نیز دارا میباشد که به قرار زیر میباشد:
1- موجب رسوب مواد آهکی بروی جداره داخلی کتریها، قوریها، لوله های آب گرم، لباس شوییها، ظرف شوییها، کولرها، شوفاژها و دیگهای بخار میگردد.
2- کیفیت طعم و مزه چای و قهوه را کاهش میدهد.
3- صابون، شامپو و سایر شوینده های خانگی با آب سخت خوب کف تولید نمیکنند بنابراین بازده شستشو کاهش یافته و مصرف شوینده ها افزایش می یابد.
4- سبب خشن و زبر شدن البسه، رنگ پریدگی لباسها و خاکستری شدن لباسهای سفید رنگ میشود. عمر مفید لباسها را کاهش میدهد.
5- کارایی و راندمان شوفاژ و سایر سیستمهای گرمایشی که در آنها آب جریان دارد راکاهش میدهد.
6- سبزیها به خوبی پخته نمیگردند.
7- شستن بدن حین استحمام با آب سخت سبب میگردد قشری از نمکهای نامحلول روی پوست و موهای بدن رسوب کند. که همین امر سبب مسدود شدن روزنه ها و خارش و سوزش پوست میگردد. همچنین موها را رنگ پریده کرده و شانه کردن و برس کشیدن موها دشوار میگردد. این رسوبات رشد باکتریها را نیز تسهیل میکند.
برای کاهش سختی آب میتوانید از فیلترهای تصفیه کننده آب خانگی استفاده کنید که دارای سختی گیر میباشند. سختی گیرها با تبادل یونهای کلسیم و منیزیم با یونهای سدیم و پتاسیم غلظت املاح سخت را کاهش میدهند.
مزایای آبی که سختی آن گرفته شده است
1- عمر مفید هیترها، ظرف شوییها و ماشین لباس شوییها و لوله های آب افزایش مییابد.
2- صابون و شامپو بهتر کف تولید کرده و میزان مصرف آنها 50 درصد کاهش می یابد.
3- کف خمیر دندان افزایش می یابد.
4- بازده سیستمهای گرمایشی افزایش می یابد.
5- مدت زمان شستشوی ظرفها کاهش می یابد.
6- جرم و رسوبات کتری، قوری، لوله های آب گرم و وان حمام حذف میگردد.
7- رگه ها و لکهای ظروف پس از شستشو به حداقل رسیده و ظروف براق تر و درخشنده تر میگردند.
8- موها را نرم و لطیف کرده و شانه و برس زدن آنها راحت تر میگردد.
9- شستشوی خودرو آسانتر میگردد.
10- اصلاح ریش صورت آسانتر میگردد.
11- خشکی و زبری پوست کاهش می یابد.
12- رخت ها پس از ششتشو نرمتر و روشنتر میشوند.
کاربرد آب سنگین در راکتورهای هسته ای
راکتورهای آب سنگین نیازی به اورانیوم غنی شده ندارد و از اکسید اورانیوم طبیعی به عنوان سوخت استفاده می کند .
این فرایند, نیاز به اورانیوم غنی شده را مرتفع می کند اما طراحی این راکتورها پیچیده و تولید آب سنگین نیز هزینه بر است .
بر اساس این گزارش آب سنگین از جدا سازی نوعی از مولکول های آب با غلظت 1 در هر 7000 مولکول به دست می آید که هیدروژن آن یک نوترون بیشتر از هیدروژن عادی دارد .
این نوترون اضافه موجب می شود تا عمل کند کنندگی نوترون های پر سرعت به اندازه ای برسد که واکنش های زنجیره ای تولید انرژی از میله های سوخت آغاز شود در حالی که در راکتورهای قدرت آب سبک , اورانیوم غنی شده درحد سه و نیم درصد و بیش از آن برای انجام واکنش مورد نیاز است .
در راکتورهای آب سنگین , این ماده وظیفه خنک کردن میله های سوخت , همزمان با کند کردن نوترون های پر انرژی را به عهده دارد.
با نزدیک شدن راکتور تحقیقاتی تهران , که حدود چهل سال پیش و با قدرت 5 مگاوات راه اندازی شده است , به پایان عمر کاری خودو نیاز روز افزون کشور به انواع رادیو ایزوتوپ های صنعتی و همچنین رادیو داروها , راکتور تحقیقاتی آب سنگین اراک با قدرت 40 مگاوات طراحی و مکان آن در نزدیکی شهر خنداب در شمال غربی شهرستان اراک تعیین شد .
از آنجا که این راکتور در زمان راه اندازی به مقدار زیادی آب سنگین نیازدارد مجتمع آب سنگین اراک همزمان با پی گیری ساخت ساختمان و راکتور آماده شد و به بهره برداری رسید تا بتواند نیاز راکتور را در زمان راه‌اندازی فراهم کند.

 

ساخت این تاسیسات همچنین موجب آموزش متخصصان و آشنایی شرکت های داخلی با استاندارهای هسته ای می شود و می تواند راه را برای ساخت نیروگاه های قدرت آب سنگین در آینده فراهم کند .
آب سنگین به یکی از شکل‌های نادر آب به نام دوتریم اکساید(D2O) گفته می‌شود که در آن به جای دو اتم هیدروژن معمولی(H)، دو اتم هیدروژن سنگین(D)، یعنی هیدروژنی که دو نوترون دارد، نشسته است. با توجه به جانشینی D به جای H در آب سنگین، انرژی پیوندی بین اکسیژن هیدروژن در آب تغییر می‌کند و در نتیجه ویژگی‌های فیزیکی و زیست‌شناختی آب دگرگون می‌شود. آب سنگین در نیروگاه‌های هسته‌ای برای کاستن از سرعت نوترون‌ها و همچنین، پژوهش‌های زیست‌شناختی و مهار بیماری‌های مانند سرطان و ایدز کاربرد دارد. تولید این ماده پر کاربرد از سال 1385 در ایران آغاز شده است.
تفاوت در نوترون
آب خالص ماده‌ای است بی‌رنگ، بی‌بو و بی‌مزه. فرمول شیمیایی آن H2O است، یعنی هر مولکول آب از پیوند دو اتم هیدروژن به یک اتم اکسیژن ساخته شده است. عنصر هیدروژن همانند بسیاری دیگر از عنصرهای طبیعت ایزوتوپ‌هایی دارد که عبارتند از H ۲ که با D (دوتریم) و H ۳ که با T (تریتیم) نمایش داده می‌شود. ایزوتوپ به صورت‌های گوناگون یک عنصر گفته می‌شود که جرم آن‌ها با هم تفاوت داشته باشد. تفاوت ایزوتوپ‌های مختلف یک عنصر از شمار نوترون‌های هسته آن‌‌ها ناشی می‌شود؛ یعنی با وجودی که شمار پروتون‌های همه‌ی اتم‌های یک عنصر از جمله ایزوتوپ‌های آن با هم برابر است، شمار نوترون‌ها در ایزوتوپ‌های مختلف یک عنصر متفاوت است. از همین رو، هیدروژن معمولی(H) در هسته‌ی خود فقط یک پروتون دارد و بدون نوترون است؛ دوتریم(D) که در هسته خود یک پروتون و یک نوترون دارد و تریتیم(T) که یک پروتون و دو نوترون دارد.
بیشتر هیدروژن‌های طبیعت از نوع H یا هیدروژن معمولی است و فقط ۰۱۵۰/0 درصد آن را دوتریم تشکیل می‌دهد، یعنی از هر ۶۴۰۰ اتم هیدروژن، یکی دوتریم است. اکنون در نظر بگیرید که به جای یک اتم هیدروژن معمولی در مولکول آب(H2O) اتم D بنشیند. آن گاه مولکول HDO به وجود می‌آید که به آن آب نیمه‌سنگین می‌گویند. اگر جای هر دو اتم هیدروژن، دوتریم بنشیند، D2O به وجود می‌آید که به آن آب سنگین می‌گویند. ویژگی‌های فیزیکی آب سنگین تا اندازه‌ای با آب سبک یا آب معمولی تفاوت دارد. با توجه به جانشینی D به جای H در آب سنگین، انرژی پیوندی بین اکسیژن هیدروژن در آب تغییر می‌کند و در نتیجه ویژگی‌های فیزیکی و زیست‌شناختی آب دگرگون می‌شود.
تولید آب سنگین
در طبیعت از هر ۳۲۰۰ مولکول آب یکی آب نیمه‌سنگین HDO است. آب نیمه سنگین را می‌توان با روش‌هایی مانند تقطیر یا الکترولیز یا دیگر فرآیندهای شیمیایی از آب معمولی به دست آورد. هنگامی که مقدار HDO در آب زیاد شد، میزان آب سنگین نیز بیشتر می‌شود، زیرا مولکول‌های آب هیدروژن‌های خود را با یکدیگر عوض می‌کنند و احتمال دارد که از دو مولکول HDO یک مولکول H2O (آب معمولی) و یک مولکول D2O (آب سنگین) به وجود آید. برای تولید آب سنگین خالص به روش یا الکترولیز به دستگاه‌های پیچیده تقطیر و الکترولیز و همچنین مقدار زیادی انرژی نیاز است، به همین دلیل بیشتر از روش‌های شیمیایی برای تهیه آب سنگین استفاده می‌کنند.

کاربرد های آب سنگین
آب سنگین را بیشتر به دلیل کاربرد آن در نیروگاه‌های هسته‌ای می شناسند. اما این ماده در پژوهش‌های علمی در رشته‌های زیست‌شناسی، پزشکی، فیزیک و شیمی و مهندسی کاربردهای فراوانی دارد. که در زیر به چند مورد آن اشاره می شود.
1. طیف‌سنجی تشدید مغناطیسی هسته. در طیف‌سنجی تشدید مغناطیسی هسته(NMR) هنگامی که هسته مورد نظر پژوهشگر، هیدروژن و حلال هم آب باشد، از آب سنگین استفاده می‌کنند. در این حالت چون سیگنال‌های اتم هیدروژن مورد نظر با سیگنال‌های اتم هیدروژن آب معمولی تداخل می‌کند، می‌توان از آب سنگین بهره گرفت، زیرا ویژگی‌های مغناطیسی دوتریم و هیدروژن با هم تفاوت دارد و سیگنال دوتریم با سیگنال هیدروژن تداخل نمی‌کند.
2. کند کننده نوترون. آب سنگین در برخی از رآکتورهای هسته‌ای به عنوان کندکننده سرعت نوترون به کار می‌رود. نوترون‌های کند می‌توانند با اورانیوم واکنش بدهند. از آب سبک یا آب معمولی هم می‌توان به عنوان کند کننده استفاده کرد، اما از آنجا که آب سبک نوترون‌های حرارتی را هم جذب می‌کند، در رآکتورهای آب سبک باید اورانیوم غنی شده(اورانیوم با خلوص زیاد) را به کار برد، اما رآکتور آب سنگین می‌تواند از اورانیوم معمولی یا غنی نشده هم استفاده کند. بنابراین، تولید آب سنگین به بحث‌های مربوط به جلوگیری از گسترش سلاح‌های هسته‌ای مربوط می‌شود.
3. آشکار سازی نوترینو. رصدخانه نوترینوی سادبری در انتاریوی کانادا از هزار تن آب سنگین استفاده می‌کند. آشکارساز نوترینو در ژرفای زمین و در دل یک معدن قدیمی کار گذاشته شده تا مئون‌های پرتوهای کیهانی به آن نرسد. هدف اصلی این رصدخانه یافتن پاسخ این پرسش است که آیا نوترینوهای الکترون که از هم‌جوشی در خورشید تولید می‌شوند، در مسیر رسیدن به زمین به دیگر انواع نوترینوها تبدیل می‌شوند یا خیر. وجود آب سنگین در این آزمایش‌ها ضروری است، زیرا دوتریم مورد نیاز برای آشکارسازی انواع نوترینوها را فراهم می‌کند.
4. آزمون‌های سوخت و ساز در بدن. از مخلوط آب سنگین با ۱۸OH2 (آبی که اکسیژن آن ایزوتوپ ۱۸O است نه ۱۶O) برای انجام آزمایش اندازه‌گیری سرعت سوخت و ساز بدن انسان و جانوران بهره می‌گیرند. این آزمون سوخت و ساز را " آزمون آب دوبار نشان‌دار"می‌نامند.
5. تولید تریتیم. هنگامی که دوتریم رآکتور آب سنگین یک نوترون به دست می‌آورد به تریتیم، ایزوتوپ دیگر هیدروژن تبدیل می‌شود. تولید تریتیم به این روش به فناوری چندان پیچیده‌ای نیاز ندارد و آسان‌تر از تولید تریتیم به روش تبدیل نوترونی لیتیم ۶ است. تریتیم در ساخت نیروگاه‌های گرما هسته‌ای کاربرد دارد.
آب سنگین و بمب اتم
رآکتورهای آب سنگین را می‌توان به گونه‌ای ساخت که بدون نیاز به دستگاه‌های غنی‌سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل کند. کشورهای هند، اسرائیل، پاکستان، کره شمالی، روسیه و آمریکا از رآکتورهای تولید آب سنگین برای ساختن بمب اتمی استفاده کردند. با توجه به امکان استفاده از آب سنگین در ساخت سلاح هسته‌ای، در بسیاری از کشورها دولت بر تولید یا خرید و فروش مقدار زیاد این ماده را به شدن نظارت می‌کند. با وجود این، در کشورهایی مثل آمریکا و کانادا می‌توان مقدار غیر صنعتی یعنی در حد گرم و کیلوگرم را بدون هیچ گونه مجوز خاصی از تولیدکنندگان یا فروشندگان مواد شیمیایی به دست آورد. هم اکنون قیمت هر کیلوگرم آب سنگین با خلوص ۹8/۹۹ درصد حدود ۶۰۰ تا ۷۰۰ دلار است.
تاریخ آب سنگین

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله 16   صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله آب سنگین

دانلود مقاله فلزات سنگین

اختصاصی از فی لوو دانلود مقاله فلزات سنگین دانلود با لینک مستقیم و پر سرعت .

 

 

خلاصه فارسی:

 

تعداد 32 نمونه غذا ، آب منابع و عضله ماهی به منظور اندازه گیری فلزات سرب و آهن در فصلهای تابستان و پاییز ، در دو نوبت با فاصله 3 ماه از چهار مزرعه پرورش ماهی قزل آلای رنگین کمان در استان چهارمحال بختیاری اخذ شده و مورد بررسی قرار گرفت .
میزان آهن و سرب به ترتیب در کل نمونه‌های آب مزارع مختلف برابر با 4/4 ± 6/60 و 2/0 ± 5/2 میکرو‌گرم بر لیتر ، میزان آهن و سرب به ترتیب در کل نمونه‌های خوراک مصرفی مزارع مختلف برابر با8/183 ± 4/563 و1/1 ± 3/3 میلی‌گرم بر کیلو‌گرم و همچنین میزان این دو فلز به ترتیب در کل نمونه‌های ماهی مزارع مختلف برابر با
9/3 ± 7/8 و1/0 ± 3/0 میلی‌گرم بر کیلو‌گرم بوده است . با توجه به مقادیر بدست آمده از دو فلز فوق هیچ‌گونه تفاوت معنی‌داری در سطح (05/0 p <) بین خوراک، ماهیان و آبهای مختلف مشاهده نشد ولی در کل ارتباط منطقی بین میزان این دو فلز در غذا و ماهیان تغذیه شده از همان غذا مشاهده گردید بطوریکه بیشترین میزان تجمع فلزات سنگین یاد شده در غذای کارخانه شماره 2 و همینطور ماهیان تغذیه شده از این غذا و کمترین میزان تجمع این فلزات در غذای کارخانه شماره 3 و ماهیان تغذیه شده با این خوراک مشاهده شد .
با توجه به استاندارد های FAO برای فلزات سنگین و مقایسه آن با مقادیر بدست آمده در تحقیق حاضر، میزان این فلزات در آب، غذا و عضلات ماهی از حداکثر مجاز پیشنهادی کمتر می‌باشد. لذا هیچ‌گونه خطری از جانب این منابع متوجه مصرف‌کنندگان بعدی مثل انسان نیست .

 


1-1- بیان مسأله:

 


فلزات سنگین به عنوان یک مسئله خطر ساز از ابعاد مختلف و به طور جدی می‌توانند زیست انسان و سایر موجودات زنده را به خطر بیاندازند. یکی از عمده‌تر‌ین منابع تولید کننده این عوامل سنگ‌های معادن و غبارهای آتشفشانی می‌باشند ولی در کنار اینها انسان خود به اشکال مختلف مانند صنایع رنگرزی، آبکاری فلزات و باطری سازی در انتشار فلزات سنگین نقش دارد(8). حضور این عوامل در محیط زیست در دراز مدت منجر به کاهش توان تولید مثلی آبزیان ، مشکلات تنفسی و عصبی و غیره شده و در ضمن با توجه به تجمع آن در بدن (تجمع زیستی) و انتقال آنها به مصرف کنندگان بعدی از جمله انسان می‌تواند عوارض غیر قابل جبرانی را ایجاد نماید. یکی از منابع مهم انتقال فلزات سنگین خوراک مصرفی ماهیان پرورشی است که با اندازه گیری دو فلز سرب و آهن می‌توان به میزان حضور این عوامل در غذا و احیاناً بالا بودن آنها بیش از حد استاندارد پی برد. همچنین بررسی میزان این فلزات در آب و ماهیان مزارع پرورشی از نظر مقایسه‌ای می‌تواند راه کار مناسبی در نحوه استفاده از این منابع آبی و یا حتی ماهیان مورد پرورش در این آبها به ما بدهد.

 

 

 

1-2- اهداف، فرضیات و سؤالات تحقیق:
1-2-1- اهداف تحقیق:
1- بررسی و اندازه گیری دو فلز سنگین سرب و آهن در چهار نوع خوراک مصرفی، آب و عضله ماهی قزل آلای رنگین کمان استان چهار محال و بختیاری.
2- مقایسه بین میزان فلزات سنگین سرب و آهن در انواع غذا، آب ورودی مزارع و عضله ماهیان مزارع مختلف قزل آلای رنگین کمان .
1-2-2- فرضیات تحقیق:
1- میزان فلزات سنگین سرب و آهن در خوراک مصرفی، آب و ماهیان قزل آلای رنگین کمان بالاتر از حد استاندارد است.
2- میزان فلزات سنگین سرب و آهن در خوراک مصرفی، آب و ماهیان قزل آلای رنگین کمان کمتر از حد استاندارد است.
1-2-3- سؤالات تحقیق:
1- میزان فلزات سنگین سرب وآهن در خوراک ، آب و عضله ماهی قزل آلا چقدر می‌باشد؟
2- آیا میزان فلزات سنگین در آبهای مختلف مزارع پرورشی با هم تفاوت دارد ؟
3- آیا میزان فلزات سنگین بین ماهیان مختلف مزارع پرورشی با هم تفاوت دارد ؟
4- آیا میزان فلزات سنگین غذای کارخانه های مختلف با هم تفاوت دارد ؟

 


1-3- روش تحقیق و پژوهش:

 


در این مطالعه از منابع غذا، ماهی و آب مزارع پرورشی قزل آلای رنگین کمان به منظور اندازه گیری میزان دو فلز سرب و آهن نمونه گیری صورت می گیرد. به ترتیب از چهار نوع خوراک پر مصرف استان چهار محال و بختیاری، در هر کدام از مزارعی که از غذای مورد نظر استفاده می‌کنند نمونه گیری صورت گرفته و از آب و ماهیان همان مزرعه نیز نمونه گیری انجام می گیرد بطوریکه از هر مزرعه یک نمونه آب ورودی ، یک نمونه غذای GFT و دو قطعه ماهی 200 گرمی برداشت شد و سه ماه دیگر نیز همین روال تکرار می شد. بطوریکه با احتساب دو فلز سرب و آهن در هر نمونه ، مجموعاً 16 فلز در غذا، 16 فلز در آب و 32 فلز در ماهیان 4 مزرعه‌اندازه گیری خواهد شد(مجموعاً 64 فلز) برای سرب اسپکترومتری جذب اتمی‌با کوره و برای آهن اسپکترومتری جذب اتمی‌با شعله انجام می‌شود. داده‌های بدست آمده با تست آماری آنالیز واریانس تجزیه و تحلیل و مقایسه میانگین داده‌ها با آزمون آماری دانکن صورت خواهد گرفت.

 

 

 


GFT: به غذای سایز ماهیان دوره رشد گفته می شود.
2-1-فلزات سنگین

 


علاوه بر کربوهیدرات‌ها، لیپیدها، اسیدهای آمینه و ویتامین‌ها برخی از فلزات سنگین برای فعالیت بیولوژیکی سلول‌ها ضروری می‌باشند. برخی از فلزات مانند آهن برای زندگی جنبه حیاتی داشته و گروهی دیگر مانند مس و روی و سرب به مقدار جزئی برای فعالیت آنزیم‌ها ضروری هستند(7). این فلزات به علت داشتن وزن اتمی‌بالا فلزات سنگین نامیده می‌شوند. چنانچه میزان ورود این فلزات ضروری به بدن بیش از حد مورد نیاز باشد باعث ایجاد مسمومیت می‌شوند. فلزات سنگین غیر ضروری و یا فلزات سمی‌نیز در بدن آثار سمی‌تولید می‌نمایند، به طور کلی فلزات سنگین موجود در محیط زیست یک خطر بالقوه برای موجودات زنده به شمار می‌آیند. انسان و حیوانات همیشه در معرض آلودگی با فلزات سنگین می‌باشند اینگونه فلزات با ترکیبات ضروری بدن از قبیل اکسیژن، گوگرد و ازت به صورت گروههایی از قبیلS-S ، SH ، OH ، COO و COOH پیوند برقرار می‌نمایند. بیشتر ترکیبات ضروری بدن از جمله آنزیم‌ها و پروتئین‌ها دارای چنین گروههایی می‌باشند در نتیجه فلزات سنگین موجب وقفه فعالیت آنزیم‌ها و اختلال در سنتز ترکیبات ضروری بدن می‌شوند(6).

 

 

 

 

 

2-1-1- منشأ فلزات سنگین:

 

این فلزات جزء عوامل متشکله طبیعی آب دریاها می‌باشند و مقادیر فراوانی از آنها به صورت طبیعی از طرق متنوعی مانند فرسایش سنگ‌های معادن، باد، ذرات غبار، فعالیت‌های آتشفشانی، رودخانه‌ها و آبهای زیرزمینی وارد دریا می‌شوند. ولی آنچه مسئله ساز است افزایش منطقه‌ای این فلزات به واسطه فعالیت‌های صنعتی انسانی مانند افزایش پساب‌ها و ضایعات صنعتی کارخانجات ،آلودگی‌های نفتی، سموم ، دفع آفات و … می‌باشد(8). این آلاینده‌ها از یک طرف باعث کاهش اکسیژن محلول در آب شده و از طرف دیگر دارا بودن سموم اثر مستقیمی‌بر روی ماهی‌ها داشته و باعث تلفات آنها می‌شود.
آبی که از مناطق آبخیز یا بستر رودخانه‌ها عبور می‌کند، سنگ‌های معدنی یا مواد محلول را با خود انتقال داده و باعث مسمومیت ماهیان قسمت‌های پائین رودخانه می‌شوند این روند سبب شده است که قسمت‌های مشخصی از نهرها، دریاچه‌ها یا سایر آب‌ها از ماهی تخلیه شوند. از موارد دیگری که سبب آلودگی آب‌ها می‌شوند می‌توان از صنایع استخراج سنگ فلزات نام برد که طی بهره برداری از معادن، آب زهکشی آنها دارای مقادیر زیادی فلزات سمی‌است. PH بعضی از این آب‌ها به مقدار کمی‌اسیدی است و سبب افزایش حلالیت فلزات می‌شود به عنوان مثال آب زهکشی معدن زغال سنگ به دلیل اسیدیته زیاد فلزات موجود در بستر معدن را در خود حل می‌کند(7)

 

 

 

 

 

2-2- سابقه تحقیقات در مورد سرب
2-2-1- سابقه تحقیقات در مورد مسمومیت با سرب و اثر آلوده کنندگی آن در انسان
سرب فلزی سنگین خاکستری مایل به آبی رنگ، عدد اتمی 82‌ و نقطه ذوب 327 درجه سانتیگراد است .این عنصر در گیاهان و خاک به مقدار بسیار کم یافت می‌شود. در خاک‌های اسیدی حلالیت آن زیاد شده و برای گیاهان سمی‌خواهد شد(9و11). لذا باران‌های اسیدی به طور غیر مستقیم در افزایش مسمومیت گیاهان و جانوران نقش دارند. از بین تمام ترکیبات سرب تنها تترااتیل سرب که در بنزین به عنوان ماده بالا برنده درجه اکتان مصرف می‌شود در حرارت معمولی اتاق قابل تصعید است لذا از سمی‌ترین ترکیبات سرب محسوب می‌شود. سرب از طریق پوست، دستگاه گوارش و تنفس جذب می‌شود(1). مهمترین راههای ورود سرب به بدن تنفس و پس از آن گوارش می‌باشد. جذب شدن از طریق پوست بستگی به نوع ترکیب آن دارد. ترکیبات معدنی سرب به کندی، در حالی که ترکیبات آلی سرب چون استات و اولئات سرب به خوبی از راه پوست جذب می‌شوند، تتراتیل سرب نیز به صورت مایع یا بخار از راه پوست جذب بدن می‌گردد(4و12).
شایع ترین علت مسمومیت با سرب جذب ذرات سرب موجود در هوا از طریق مجاری تنفسی است به خصوص در صنایعی که گرد و غبار و بخارات و دود سرب تولید می‌شود. جذب سرب از طریق استنشاق در افراد بالغ حدود 10 درصد و در اطفال حدود 40 درصد می‌باشد که حدود 95 درصد آن جذب خون می‌شود و ما‌بقی به دنبال هوای بازدم خارج شده یا در قسمت فوقانی دستگاه تنفسی تجمع می‌یابد و مجدداً بلع می‌گردد. به طور اولیه مسمومیت سرب در بزرگسالان از راه تنفس است(4و12).
تا قبل از سال 1942 تجمع و ذخیره شدن سرب در استخوان‌ها مورد توجه نبوده و وجود آن را در استخوان‌ها در مقایسه با عضلات و نسوج بی اهمیت می‌دانستند. بعدها معلوم شد که ترکیبات معدنی سرب ابتـدا در بافت‌های نرم شامل مغز ، کبــد و ماهیچــه‌ها توزیع و ته نشین شده و به زودی در طول زمان مقدار آن کمتر می‌شود و سپس در بافت‌های استخوانی دندان و مو ذخیره میگردد. ذخیره سرب در استخوان شباهت زیاد به ذخیره کلسیم دارد و به صورت فسفات سرب ذخیره می‌شود. چنانچه غلظت فسفات خون کم باشد سرب در بافت‌های غیر استخوانی ذخیره می‌شود، ویتامین D باعث ذخیره سرب در استخوان شده و هورمون پاراتیروئید موجب کاهش ذخیره در بافت استخوان و افزایش آن در خون می‌شود. سرب اساساً از طریق ادرار و به مقدار ناچیز از طریق مدفوع، عرق و شیر دفع می‌شود. دفع سرب در حیوانات آزمایشگاهی بیشتر از طریق صفرا است(4). آب‌ها به واسطه عبور در مسیر معادن سرب و نیز راه یابی فاضلاب کارخانجاتی چون صنایع باطری سازی، کریستال سازی، رنگ سازی و … آلوده می‌شوند. این آب‌ها موجب تجمع سرب در ماهی و آبزیان میگردد. مطالعات بیانگر ارتباط مستقیم بین غلظت سرب موجود در آب‌ها و لجن و غلظت آن در بافت‌های آبزیان است و از طرف دیگر آبیاری مزارع و مراتع به وسیله این آب‌ها منجر به افزایش میزان سرب در بافت‌های گیاهی و به دنبال آن افزایش میزان سرب در شیر، گوشت و تخم مرغ دام‌ها می‌شود(3).
سرب با بسیاری از ترکیبات ضروری بدن مانند آنزیم‌ها وپروتئینها اتصال برقرار نموده و موجب وقفه در فعالیت آنزیم و اختلال در سنتز پروتئین و غیره می‌گردد. این فلز موجب وقفه فعالیت آنزیم سدیم- پتاسیم- آدنوزین تری فسفات(Na-k-Atpase) گشته و میزان آنزیم ترانس آمیناز افزایش می‌یابد در حالی که این فلز موجب کاهش فعالیت آنزیم آلکالین فسفاتاز و متیل استراز می‌شود(20).
اولیــن عـــلائم مسمومیت ســرب غالباً غیر اختصاصی است به صـورت خستــگی، تهوع، بی اشتهایی، تغییر وضعیت خواب، اسهال، یبوست، افسردگی بروز می‌کند و با افزایش آن در فرد عوارض دیگری چون افزایش فشار خون، تغییر خلق و خو و اختلالات حرکتی،کم خونی ، عوارض عصبی ، آنسفالپاتی و نوریت بروز می کند(1و4). حداکثر میزان سرب برحسب استانداردهای موجود در کشورهای مختلف و بر اساس قوانین غذایی 1979 در آب آشامیدنی 50 میکروگرم در دسی لیتر و در عضله ماهی به میزان 2 میلی گرم در کیلوگرم می‌باشد(11).

 

2-2-2- اثر آلوده کنندگی سرب در آب دریا و ماهیان:
سرب در محیط آب بیشتر در رسوبات بستر تجمع یافته و میزان آن 4 برابر بیشتر از سرب موجود در آب است. این ماده به طور عمده در کلیه، آبشش، عضلات و استخوانها تجمع پیدا می‌کند. طبق گزارش FAO سالانه حدود 2 هزار تن سرب به دریا ریخته می‌شود که به پلانکتونها به ویژه فیتوپلانکتونها که حدود 7% اکسیژن را تأمین می‌کنند صدمه زده و سبب مرگ و میر آنها می‌شود. سرب در هوا، آب و خاک وجود داشته از طریق گردش خون در بافت‌ها رسوب نموده و ایجاد مسمومیت می‌نماید.
سمیت سرب برای ماهی و سایر موجودات آبزی تحت تأثیر کیفیت آب بوده و به قابلیت انحلال ترکیبات سرب و به غلظت‌های کلسیم و منیزیم در آب بستگی دارد به عنوان مثال مشخص شده است که سمیت سرب با افزایش غلظت کلسیم و منیزیم در آب کاهش می‌یابد. مسمومیت حاد سرب ابتدا باعث آسیب به اپیتلیوم آبشش شده و ماهی مبتلا به علت خفگی تلف می‌شود. علائم مشخص مسمومیت مزمن سرب شامل تغییرات تابلوی خونی با آسیب شدید گلبول‌های قرمز و سفید، تغییرات تحلیل رونده بافت‌های پارانشیماتوز و آسیب سیستم عصبی است(7و5). حضور بیش از حد سرب در آب ممکن است باعث محدودیت آنزیمی‌موجود در بافت‌های مختلف بدن شود اما اثر زیادی در تنظیم پتاسیم توسط آبشش ندارد چنین وضعیتی ممکن است بدین علت باشد که ماهیان اغلب در آب‌های تقریباً ایزوتونیک با خونشان زیست می‌کنند بنابراین شیب یا تغییرات زیادی در داخل یا خارج بدن ماهی برای سدیم وجود ندارد(7).
2-3- سابقه تحقیقات در مورد آهن
2-3-1- سابقه تحقیقات راجع به مسمومیت با آهن و اثر آلوده کنندگی آن بر انسان:
شایع ترین شکل مسمومیت به صورت خوراکی است. به طور طبیعی بدن به 4 تا5 گرم آهن نیاز دارد که در نسوج مختلف توزیع شده است. حدود 10 تا 20 درصد از آهن خورده شده از سلول‌های مخاطی دئودنوم و ژئوژنوم به صورت آهن دو ظرفیتی جذب می شود. دفع طبیعی آهن از بدن محدود به 1 تا 2 میلی گرم در روز از طریق خون قاعدگی و پوسته ریزی مخاط دستگاه گوارش است. بدن توانایی دفع آهن را بیشتر از 2 میلی گرم در روز ندارد و از این رو مصرف بیش از حد آهن موجب تجمع آهن در اعضای هدف می‌گردد
و اصولاً خوردن بیش از 30 میلی گرم بر کیلوگرم آهن موجب مسمومیت و بیش از 250 تا 300 میلی گرم بر کیلوگرم آن موجب مرگ می‌شود(1).

 


مکانیسم اثر آهن در ایجاد مسمومیت به 4 فرم است:
1- گشاد شدن پس شریانچه‌ای
2- افزایش نفوذپذیری مویرگ‌ها به علت اثر مستقیم آهن
3- اسیدوز به دلیل آزاد شدن یون‌های هیدروژن
4- آسیب میتوکندری به خصوص در سلول‌های کبد.
اثر آهن بر دستگاه گوارش:
آهن سبب نکروز هموراژیک قسمت‌های ابتدایی دستگاه گوارش و همین طور موجب انفارکتوس قسمت انتهای روده کوچک می‌شود البته تنگی پیلور و انسداد روده از دیگر عوارض دیررس و نادر می‌باشد.
اثر آهن بر کبد:
تأُثیر آهن روی کبد از حالت عدم تغییر تا نکروز هموراژیک اطراف پورت و تغییر وضعیت سلول‌های کوپفر و سلول‌های پارانشیمال متغیر است. آسیب کبدی مذکور می‌تواند موجب هیپوکلسمی، هیپوپروتئینمی و اختلال‌های انعقادی و در نهایت نارسایی کبد بشود(33).
اثر آهن بر قلب و عروق:
تأثیر آن به صورت گشاد شدن انتهای مویرگ و افزایش نفوذ‌پذیری آنها می‌باشد که موجب پر شدن وریدها، کاهش حجم خون و کم شدن برون ده قلب می‌شود. فرآورده آهن ممکن است شامل یکی از 3 نمک فرو(سولفات، فومارات و گلوکونات) باشد مسمومیت براساس مقدار عنصر آهن موجود در نمک(20 درصد در نمک سولفات، 33 درصد در فومارات و 2 درصد در گلوکونات) می‌باشد خوردن بیش از 20 میلی گرم در دسی لیتر عنصر آهن سبب ایجاد مسمومیت گوارشی و خوردن بیش از 60 میلی گرم در دسی لیتر باعث مسمومیت سیستمیک می‌گردد. تظاهرات اولیه مسمومیت ناشی از آهن شامل استفراغ و اسهال خونی و تب و هیپرگلیسمی‌و لکوسیتوز می‌باشد(1و4).

 

2-3-2-اثر آلوده کنندگی آهن در آب دریا و ماهیان:
این عنصر در آب‌های سطحی به اشکال اکسید 2 ظرفیتی یا 3 ظرفیتی وجود دارد و در آب‌های کم دما و واجد آهن، باکتری‌های ته نشین کننده آهن به میزان زیادی روی آبشش‌ها تکثیر یافته و به اکسیداسیون آهن 2 ظرفیتی کمک کرده و کلونیهای رشته‌ای آنها آبشش‌ها را می‌پوشاند ابتدا آبشش‌ها بی رنگ می‌شوند ولی بعداً آهن ته نشین شده و باعث قهوه‌ای شدن کلونیهای رشته‌ای می‌شود ترکیبات رسوب یافته آهن و رشته‌های باکتری‌های ترسیم کننده آن سطح مفید تنفسی آبشش‌ها را کاهش داده باعث آسیب به اپیتلیوم تنفسی و شوک در ماهیان می‌شود(7). حد مجاز آهن برای کپور معمولی کمتر از 2/0 و برای قزل‌آلا کمتر از 1/0 میلی گرم در لیتر آب است(24). گرچه اثرات سمی آهن و نمک‌های آن به ندرت رخ می‌دهد اما اثرات کشنده حضور این مواد در مجاورت طولانی با ماهی در آب‌هایی که به مقدار ضعیفی بافر بوده و PH آنها پایین است قابل توجه است همانطور که ذکر شده تأثیرات غیر مستقیم سمی‌آهن به طور عمده محدود به رسوب هیدروکسید فریک و یا اکسید فریک در روی آبشش ماهی می‌باشد. رسوب هیدروکسید فریک بر روی تخم‌های دارای جنین در حال رشد نیز ممکن است باعث خفگی و مرگ و میر جنین شود دلیل عمده تلفات ناشی از رسوب هیدروکسید فریک بر روی آبشش ماهی به دلیل ممانعت از جا‌به‌جایی اکسیژن و یا در تخم‌های چشم زده به دلیل ممانعت از ورود اکسیژن از طریق پرده کوریون جنین به داخل تخم است(34).
شاپر کلوز(1992) عامل اصلی صدمات ناشی از آهن را رسوب ترکیبات این عنصر بر روی آبشش می‌داند و معتقد است که این رسوب باعث ایجاد مناطق نکروتیک بر روی آبشش ماهی قزل آلای جوان می‌شود. به طور کلی می‌توان ابراز نمود آبهایی که واجد ترکیبات آهن قابل رسوب هستند معمولاً دارای اکسیژن محلول کم ، مقدار زیادی دی اکسید کربن و PH کمتر از 7 می‌باشند هوادهی این آب‌ها باعث کاهش دی اکسید کربن و افزایش اکسیژن محلول می‌گردد و اجازه می‌دهد که آهن به طرف بستر استخر رسوب نماید(32).
طی تحقیقی که توسط کوگی و همکاران (2006) روی ماهی کفال و ماهی خاردار در شمال شرقی دریای مدیترانه در ترکیه انجام شد میزان کادمیوم، مس، آهن، روی و سرب توسط جذب اتمی با شعله در کبد ، آبشش و عضله اندازه گیری و نتایج زیر حاصل شد .
1- به جز سرب بیشترین میزان از هر فلز ابتدا در کبد، سپس در آبشش و بعد در عضله بوده است.
2- آهن ، روی و مس بیشترین فراوانی و کادمیوم و سرب کمترین فراوانی را در بافتهای مختلف داشتند.
3- تغییرات فصلی نیز در میزان فلزات مشخص شد ولی به طور کلی بیشترین میزان برای تمام فلزات در بافت‌های مختلف هر دو گونه ماهی در تابستان مشاهده شد(18).
در تحقیقی که توسط اشرف و همکاران (2006) روی میزان هفت فلز سنگین(سرب ، کادمیوم ، نیکل ، مس ، روی ، کروم و آهن ) در ماهی‌های کنسرو شده ساردین، آزاد و تن که در کشور عربستان مورد استفاده قرار می‌گیرد انجام شد سرب و کادمیوم از طریق اسپکتروسکوپی جذب اتمی تیوپ گرافیتی و نیکل، مس، کروم و آهن با استفاده از اسپکتروسکوپی جذب اتمی‌با شعله تعیین شد.
- میزان سرب در ماهی آزاد برابر با 2/1-03/0 میکروگرم در گرم با میانگین 313/0 میکروگرم در گرم می‌باشد .
- میزان سرب در ماهی تن برابر با 51/0-03/0 میکروگرم در گرم با میانگین 233/0 میکروگرم در گرم می‌باشد .
- میزان سرب در ماهی ساردین برابر با 97/1-13/0 میکروگرم در گرم با میانگین 835/0 میکروگرم در گرم می‌باشد .
مشخص شد که میانگین غلظت سرب در ساردین 4 برابر ماهی تن و به طور کلی میزان فلزات به ترتیب زیر است:
ماهی تن< ماهی آزاد< ساردین
این تحقیقات نشان داد که ماهی کنسرو شده به طور کلی و ماهی تن به طور خاص دارای غلظت‌های مجاز و در چهارچوب سازمان بهداشت جهانی و سازمان خاروبار جهانی از نظر فلزات سنگین هستند(16).
طی مطالعه انجام شده توسط اشمیت و همکاران (2006) خرچنگ و ماهی از شش گونه معرفی عمده(کپور معمولی و گربه ماهی کانال و گربه ماهی سرپهن ماهی خاردار دهان گنده و ماهی خاردار خالدار و کراپی سفید3). در سال‌های 2001 و 2002 در شمال شرق الکاهاما از آب‌های رودخانه اسپرینگ و رودخانه نیوشو که هر دو به 4TSMD تخلیه می‌شوند جمع آوری گردید.
نمونه‌هایی هم از مکان‌های آلوده به مواد معدنی در میژوری شرقی جمع آوری شد و همراه با نمونه‌هایی از مکان‌های مرجع مورد تجزیه و تحلیل قرار گرفت. غلظت فلزات در نمونه‌هایی که به شدت تحت تأثیر مواد معدنی قرار داشتند بالاتر بود و در نمونه‌های مرجع در کمترین حد خود بوده است. غلظت‌ و تراکم فلزات و نیز میزان خطر در ماهی و خرچنگ شاخه‌های آلوده رودخانه اسپرینگ بیش از جریان‌های اصلی رودخانه اسپرینگ یا رودخانه نیوشو بوده است. براساس نتایج حاصل از این بررسی مصرف کپور و خرچنگ را می‌توان با توجه به معیار فعلی میزان سرب، کادمیوم و روی محدود نمود و مصرف گربه ماهی کانال را نیز می‌توان به واسطه میزان سرب محدود نمود غلظت فلزات در گونه میکروپتروس5 و کراپی6 به طور یکنواختی اندک است نیاز به محدودیت مصرف ندارد (33).
کارادد و همکاران (2004) توزیع برخی فلزات سنگین در سه‌اندام مختلف ماهی کفال و گربه ماهی لیزا آبو7 و سیلوروس تریوستگوس8در سد دریاچه آتاتور‌ک واقع در فرات ترکیه را مورد بررسی قرار دادند. تجمع فلزی در کبد و آبشش ماهیان در مقایسه با مقدار فلزات در عضلات کاملاً بیشتر بوده است .
غلظت فلزات کبالت، مس، آهن، منگنز، نیکل و روی که در عضلات ماهی مشخص گردیده کمتر از محدوده‌های مجاز اعلام شده از سوی سازمان خار و بار جهانی می‌باشد (27).
در تحقیقی که توسط آندرژی و همکاران (2006) انجام شد، ماهی‌ها از دو مزرعه در جنوب غربی اسلکواکی انتخاب شدند و هدف از این مطالعه تشخیص و ارتباط بین غلظت فلزات سنگین انتخابی و میزان بار میکروبی(شمارش باکتری‌های کل - باکتری‌های اسپورزای بی هوازی مزوفیلیک ) در عضلات ماهی کپور معمولی بوده است .
غلظت فلزات انتخابی با اسپکتروفتومتری جذب اتمی مدل " Pye unicam spq" اندازه گیری شد. غلظت فلزات برحسب میلی گرم بر کیلو گرم بر پایه وزن خالص برابر با:
آهن 15/15-47/3 ، منگنز 42/0-14/0 ، روی 52/9- 47/3 ، مس 32/1- 24/0 ، کبالت 17/0- 05/0 ، نیکل 42/0 – 07/0 ، کروم 19/0- 08/0 ، سرب 30/0 -11/0 و کادمیوم 05/0 – 01/0 گردیدند.
شمارش باکتریایی بی هوازی مزوفیلیک و باکتریهای کل بر حسب واحد تشکیل کلنی در گرم به ترتیب برابر با 3 10 76/7- 12/1 و6 10 59/7- 03/0 بوده است. اختلاف معنی داری در سطح P<0.05 برای تجمع زیستی کروم ، نیکل و مس و شمارش بار میکروبی باکتریهای بی هوازی مزوفیلیک در مزرعه‌ها ثبت شده است. همبستگی مثبت بین شمارش باکتریهای بی هوازی مزوفیلیک و تجمع فلزات سنگین به جز نیکل و همبستگی منفی بین شمارش باکتری‌های کل و تجمع فلزات سنگین به جز کروم ثبت شده است. غلظت سرب از حداکثر میزان مجاز در قوانین تغذیه‌ای اسلکواکی (2/0 میلی گرم بر کیلو گرم) %60 در استخر A و %40 در استخر B و میزان شمارش باکتریهای بی هوازی مزوفیلیک از حداکثر میزان آن در %100 دو استخر تجاوز کرده است و به طور متوسط ترتیب میزان فلزات در عضلات ماهی به این صورت بوده است (15).
استخر A : آهن < روی < مس< منگنز< سرب< کروم< نیکل< کبالت< کادمیوم
استخر B: آهن <روی< مس< منگنز< سرب< نیکل < کروم< کبالت< کادمیوم
طی بررسی انجام گرفته توسط فلم و همکاران(2005) فلس ماهی آزاد اقیانوس اطلس در مرحله قبل از اسمولت از چهار جمعیت وحشی و پرورشی با استفاده از LA-H-ICP-MS مورد آنالیز قرار گرفت هدف از این تحقیق بدست آوردن اختلافات بین ترکیبات عناصر ماهی آزاد که در آب‌های شیرین ، تا مرحله اسمولتیفیکاسیون زندگی کرده‌اند و به طور طبیعی رهاسازی یا به قفس‌هایی روی دریا انتقال داده شده‌اند می‌باشد. این جمعیت تحت آزمایش در واقع از انواع گونه‌های واقع در بخش برمنگر و سورفولد و یک گونه پرورشی از مسا و یک گونه محلی وحشی از رودخانه گولا بوده اند. عناصری که مورد آنالیز قرار گرفت شامل(لیتیم ، منیزیم ،کلسیم ، کرم ، منگنز، آهن، روی ، باریوم و سرب ) بوده است، کلسیم نیز به عنوان استاندارد داخلی طبیعی مورد استفاده قرار گرفت.
با اندازه‌گیری این ده عنصر توانایی تشخیص یک نوع جمعیت از بین جمعیتهای مختلف( گولا، مسا، سورفلد و برمنگر) بدست آمد .
اختلافات در ترکیبات عناصر فلس‌ها که امکان تشخیص چهار خانواده را فراهم می‌کند احتمالاً در اثر تنوع بستر سنگ‌ها در محل چهار نوع آب شیرین است که ماهی آزاد در طول دوره قبل از اسمولت در آن بوده است (23).
اندرسون و همکاران (2004) بر روی انتقال فلزات سنگین از رسوبات به ماهی قزل آلای رنگین کمان و همچنین ترشحات صفرای آنها مطالعه نموده و از میان هفت فلز سنگین روی، سرب، نیکل، جیوه، مس، کروم و کادمیوم تنها سه مورد جیوه، سرب و مس در صفرا متمرکز شده و نسبت صفرا به پلاسما بزرگتر از 1 بوده است.
برای تعیین سمیت صفرای پلاسمای خون ماهی قزل‌آلا از سنجش‌حیاتی سخت‌پوست دافنی استفاده شد، آنالیز واریانس نشان داد که سمیت صفرا و پلاسمای خون با استفاده از دافنی در مــاهیان قــزل آلایی کــه در معرض فلزات سنــگین قـرار گرفته بودند رابطه معنی داری با موارد زیر دارند(13).
1- غلظت پلاسما و صفرای مورد آزمایش
2- استفاده ازاسید در صفرا و پلاسما (هیدرولیز پلاسما و فلز وکمپلکس صفرا- فلز)
3- تراکم فلزات سنگین در رسوبات طی قرار گرفتن ماهی در معرض آن.

 

طی تحقیقات انجام شده توسط کوئلو و همکاران (2004) بر روی ماهیان انگشت قد آب شیرین ماهی باس دهان گشاد نسبت به ماهی خورشیدی سبز و ماهی طلایی در برابر با 250 میلی‌گرم در لیتر سوسپانسیون سرب یا محلول نیترات سرب تحمل بیشتری را داشته است. هنگامی‌که موکوس تهیه شده از ماهی باس دهان گشاد به ظرف حاوی سرب افزوده شد مقدار دوز کشنده 50% در ماهی خورشیدی سبز و ماهی طلایی افزایش یافت. اضافه کردن فلس‌ها به ویژه اگر فلس‌ها با محلول قلیایی سیستین و گلایسین تیمار شده باشند همه این گونه‌ها را در مقابل دیگر غلظت‌های کشنده سرب و یا جیوه مقاوم می‌‌نماید. فلس‌ها PH محلول نیترات سرب را با فره کرده و سرب و جیوه را(پس از کمپلکس کردن سرب) ته‌نشین می‌کنند. فلس‌های مربوط به ماهیان جوان‌تر گونه ماهی باس دهان گشاد در مقایسه با فلس‌های مربوط به انواع پیرتر کارآیی بیشتری در شلاته کردن فلزات سنگین داشتند(19).
در مطالعه‌ای که توسط زلیکوف و همکاران (1993) بر روی تأثیر آلوده کننده‌های فلزی بر پاسخ‌های ایمنی ماهی‌ها در شرایط آزمایشگاه و بدن موجود زنده انجام گرفت، بنا به دلایل زیر فلزات سنگین به عنوان آلوده کننده برای این بررسی در نظر گرفته شد:
1- فراوانی آنها در آب آلوده .
2- احتمال بالقوه ایمنوتوکسیک در دستگاههای بدن پستانداران.
3- قدرت ایجاد تومور در جوندگانی که در معرض آنها قرار گرفته‌اند.
4- سمیت کلی آن برای انواع گونه‌ها.
لذا برخی از فلزات سنگین از جمله کادمیوم، کروم، مس، سرب، منگنز و نیکل و روی برای بدن پستانداران ایمنوتوکسیک هستند به علاوه اعمال تنظیم ایمنی را در انواعی از گونه‌های ماهیان تغییر می‌دهند که این تغییرات می‌تواند سرانجام به افزایش مستعد شدن میزبان نسبت به عفونت‌ها و بیماری‌های خوش‌خیم در ماهیانی که در آبهای آلوده به فلزات سنگین ساکن شوند منجر گردد(36).
در مطالعه‌ای که توسط پیتر و همکاران (1987) انجام گردید مشخص شد که در خلال سنجش کیفیت آب، تاثیرات متقابل و سرنوشت فلزات سنگین در نظر گرفته نمی‌شود به عنوان مثال:
1- متیلاسیون جیوه توسط باکتریهای رسوبات، چربی دوستی(لیپوفیلی) آن را افزایش داده و موجب انباشته شدن آن توسط ماهی‌ها می‌شود.
2- بی مهرگان قسمت‌های عمیق اقیانوس با جذب سطوح معمولی سلنیوم آب می‌توانند برای ماهیانی که از موجودات ته اقیانوس تغذیه می‌کنند کشنده باشد.
3- اتصال پروتئین‌ها به فلزات سنگین که با در معرض قرار گرفتن فلزات روی می‌دهد، می‌تواند موجب افزایش تحمل ماهی‌ها نسبت به فلزات سنگین شود و متابولیسم طبیعی آنها را در رابطه با مواد مغذی مانند روی تغییر دهد در نتیجه: میزان آلودگی با فلزات مستلزم شناخت بیشتر درباره چگونگی جذب و متابولیسم فلزات در ماهی و ایجاد معیارهایی در رابطه با میزان بار فلزی و غلظت آنها می‌باشد(30).
دمیراک و همکاران (2005) غلظت فلزات سنگین کادمیوم، کروم، مس، سرب و روی در آب و رسوبات کف و بافت‌های عضلات و آبشش ماهی لئوسیسکوس سفالوس مربوط به رود دیپسیز2 در حوضه یاتاگان(جنوب غربی ترکیه) که محل یک نیروگاه حرارتی می‌باشد را اندازه گیری نمودند غلظت کادمیوم، سرب، روی و کروم در آبشش‌ها بیش از عضلات و سطح مس در عضلات بالاتر از آبشش‌ها بوده است، از طرف دیگر ارتباطی بین غلظت فلز در آب و رسوبات با عضلات و آبشش ماهی‌ها پیدا نشد و فقط یک رابطه مثبت بین غلظت مس و روی در رسوبات و بافت ماهی مشاهده شد نتایج نشان می‌دهد که آلودگی حاصل از نیروگاههای حرارتی ممکن است منبعی از این عناصر باشد(22).
در مطالعه‌ای که توسط سلدا و همکاران (2005) بر روی غلظت فلزات سنگین مس، آهن، روی، منگنز، کروم، سرب و کادمیوم در بعضی از اندام‌های ماهی لای ماهی و بافت‌های انگل آن در دریاچه کوادا ترکیه با استفاده از اسپکتروفتومتری جذب اتمی ‌انجام شد از بین فلزات فوق چهار فلز مس، آهن، روی و منگنز همزمان در آب، رسوبات و پلروسرکوئیدهای انگل لیگولا اینتستینالیس2 و نمونه‌های ماهی مشاهده شد. این عناصر دارای غلظت بیشتری در پلروسرکوئیدها نسبت به بافت‌های مختلف ماهی(عضلات، کبد، آبشش) بوده‌اند و غلظتی معادل 4/37-6/1 برابر میزان اندازه‌گیری شده در عضلات کبد و آبشش را داشته‌اند.
مشخص شد که سستودها جهت تعیین میزان فلزات سنگین در رسوبات مناسبند و اطلاعات موثق تری را درباره آلودگی واقعی منابع آب فراهم می‌کنند(31).

 

- لالشاه و همکاران (2005) نیز بر روی میزان تجمع فلزات سنگین کادمیوم، سرب و جیوه و میزان h96/50Lc در بدن ماهیان مطالعه انجام دادند بطوریکه غلظت جیوه، کادمیوم و سرب به ترتیب برابر با 011/0 ،32/0 و59/1 میلی‌گرم درگرم و میزان h96/50Lc آنها به ترتیب برابر با 1 و5/6 و300 قسمت در میلیون (ppm ) بوده است . تجمع عمومی فلزات سنگین در h96/50Lc به صورت سرب <کادمیوم< جیوه، بوده است. ماهیانی که غلظت بدنی کمتری از فلزات سنگین را دارا می باشند میزان h96/50Lc مربوط به فلزات سنگین در آنها کمتر است(28).
- در تحقیقی که آلام و همکاران(2000) بر روی کپور ماهیان وحشی موجود در رودخانه کاسومیگورای ژاپن انجام دادند مشخص شد که میزان غلظت فلزات سنگین در بدن این ماهیان از حد استاندارد تجاوز نمی کند(10) .

 

- در محیطهای اطراف آبزیان، فلزات سنگین به شکل محلول توسط ارگانیسم های آبزی جذب شده و از طریق باندهای سولفیدریل پروتئینی در بافتهای آنها تجمع می‌یابد(21).

 

2-3-3- مقادیر استاندارد پیشنهاد شده آهن و سرب از سوی سازمانها ومحققان مختلف :

 

- حداکثر میزان سرب در عضلات ماهی که توسط سازمان خوار و بار جهانی (FAO)پیشنهاد شده 5/0 میلی‌گرم در کیلوگرم است(26).

 

- حداکثر میزان آهن در عضلات ماهی که در جدول ترکیبات مواد غذایی انستیتو تحقیقات تغذیه‌ای و صنایع غذایی کشور(1379) پیشنهادشده 8 میلی‌گرم در کیلو‌گرم می‌باشد.

- حداکثر میزان آهن در آب مورد استفاده قزل آلای رنگین کمان که توسط هولیمان (1993) پیشنهاد شده 100 میکرو‌گرم بر لیتر است(25) .

 

- حداکثر میزان آهن در آب مورد استفاده آزاد ماهیان که توسط اسوبودووا و همکاران(1993) پیشنهاد شده 1/0 میلی‌گرم بر لیتر است (35).

 

- حداکثر میزان سرب در آب مورد استفاده قزل آلای رنگین کمان که توسط اسوبودووا و همکاران(1993) پیشنهاد شده30 میکرو‌گرم بر لیتر است(35) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-1 - مواد و لوازم مورد نیاز :

 

1- ظروف یک لیتری پلاستیکی جهت جمع‌آوری نمونه‌های آب .
2- نایلون جهت جمع‌آوری نمونه‌های غذا .
3- نایلون جهت جمع‌آوری نمونه‌های ماهی .
4- جعبه یونولیتی جهت سرد نگه داشتن نمونه‌های ماهی .
5- قطعات یخ جهت سرد نگه داشتن نمونه‌های ماهی .
6- برچسب برای یادداشت مشخصات هر نمونه .
7- دستکش یک‌بار مصرف جهت نمونه‌برداری از غذا و ماهی.

 

3-2- روش کار :

 

در ابتدا طی تحقیقات انجام شده مزارعی که از غذاهای مورد نظر جهت تغذیه ماهیان استفاده می‌کردند مشخص شده و نشانی آنها یادداشت گردید .
سپس جهت نمونه برداری به این مزارع مراجعه شد و در ضمن مراجعه ، در مورد سیستم پرورش ماهیان قزل‌‌آلا و نوع استخرهای پرورشی جهت یکدست بودن سیستم پرورشی مزارع انتخابی اطلاعات مورد نیاز از مسؤولین بدست آمد و در مجموع از چهار نوع خوراک مصرفی مورد نظر در سایز GFT ٬ آب ورودی مزارع منتخب و ماهیان سایز 200 گرمی نمونه‌برداری صورت گرفته و به آزمایشگاه ارجاع شد .

 

1- نمونه‌برداری از ‌آب : ظروف شیشه‌ای مربوط به نمونه‌برداری از آب ابتدا بوسیله اسید کلریدریک و سپس آب مقطر شستشو داده شد تا PH ظروف خنثی بماند (2). سپس از قسمت ورودی آب مزارع نمونه‌برداری صورت گرفته و مشخصات نمونه از قبیل نام و مشخصات مزرعه ٬ تاریخ نمونه‌برداری و نام مسؤول مزرعه روی نمونه یادداشت گردید . دمای آب ورودی اندازه‌گیری شده و با نگه‌داری ظروف در مجاورت یخ در جعبه یونالیتی دمای آب تا رسیدن به آزمایشگاه در همان دما نگه‌داری گردید .

 

2- نمونه‌برداری از غذا : پس از ورود به انبار از کیسه‌های غذا در سایز GFT بوسیله دستکش یک‌بار مصرف و از هر کیسه به مقدار مساوی از اعماق مختلف برداشت شده و در نایلون ریخته شد و با تکان دادن مخلوط گردید . دلیل این‌کار جلوگیری از بروز خطا ناشی از مشکل‌دار بودن احتمالی یکی از کیسه‌ها بود . سپس مشخصات نمونه روی آن یادداشت گردید .

 

3- نمونه‌برداری از ماهی : ماهیان انتخابی همگی از نظر سلامت ظاهری مشاهده شده سپس با اخذ تاریخچه غذایی ماهیان ٬ از مزارعی که در طول مدت رشد ماهی از چند نوع غذا استفاده کرده بودند نمونه‌برداری صورت نگرفت و فقط ماهیانی جمع‌آوری شدند که از ابتدا تا رسیدن به این وزن از یک نوع غذا تغذیه شده بودند .از هر مزرعه جهت اطمینان دو عدد ماهی مورد بررسی قرار گرفت . سپس ماهیان درون نایلون گذاشته شده و در مجاورت یخ به آزمایشگاه حمل شدند .
نمونه‌ها ظرف مدت 2-1 ساعت به آزمایشگاه منتقل گردیده و فرآیندهای زیر روی آنان صورت گرفت :

 

1) اقدامات انجام گرفته بر روی نمونه‌های آب :
بعد از انتقال ظروف به آزمایشگاه ، اسید سولفوریک به این ظروف افزوده شد که PH آب زیر 2 قرار گیرد تا در میزان فلزات سنگین تغییری حاصل نشود .

 

2) اقدامات انجام گرفته بر روی نمونه‌های خوراک :
نمونه مورد نظر را در اسید نیتریک همراه با اسید کلریدریک هضم می‌کنیم و با جذب اتمی شعله‌ای قرائت می‌کنیم . عناصری مانند آهن که مقدار آن در غذای ماهی زیاد می‌باشد، باید ابتدا رقیق شده و سپس قرائت شود .

 

3) اقدامات انجام گرفته بر روی نمونه‌های ماهی :
نمونه عضله ماهی را با اسید نیتریک هضم می‌کنیم و با جذب اتمی شعله‌ای عناصر مورد نظر را قرائت می‌کنیم . مقدار عناصر در عضله و خوراک ماهی به حدی است که با شعله قابل قرائت می‌باشد و نیازی به کوره گرافیتی نیست ولی در مورد آب مقدار عناصر در حد قسمت در بیلیون (ppb) است که باید با کوره قرائت شود .
(لازم به ذکر است که دستگاه جذب اتمی مورد استفاده، مدل یونیکم 939 می‌باشد که محصول مشترک آلمان و انگلستان است )

 

 

 


3-2-1- تاریخچه دستگاه جذب اتمی:
روش جذب اتمی در اواسط سال 1950 توسط آلن والش معرفی شد گرچه اصول اساسی طیف جذب اتمی در سالهای قبل از سال 1860 ، بنا نهاده شده بود.
به طور کلی جذب اتمی اسپکتروفتومتری در مفهوم تجزیه ای بعنوان روشی برای تعیین مقدار غلظت یک عنصر در نمونه با اندازه گیری مقدار جذب تشعشعات در بخار اتمی تولید شده از نمونه در طول موجی که مشخص و خاص عنصر تحت اندازه گیری می باشد توصیف می شود.
بطوریکه ثابت کرده اند جذب اتمی اسپکتروسکپی دقیق ترین وسیله فنی برای تخمین و تعیین مقدار فلزات در محلولها می باشد کارائی این وسیله به تنهایی توسط این حقیقت که بین 60 تا 70 عنصر فلزی را با آن در غلظتهائی از حدود جزئی تا مقادیر نسبتاً زیاد میتوان تعیین مقدار نمود روشن می شود. این وسیله محدود به محلولهای آبی نمی شود زیرا حلالهای آلی و مخلوط حلالهایی آلی و آبی نیز مناسب هستند و در بسیاری حالتها برای تعیین مقدار با صرفه تر می باشند. در این روش تصفیه شیمیایی نمونه بندرت مورد نیاز می باشد بطوریکه اندازه گیری غلظت انواع فلزات با اتمیک ابسورپشن به سرعت و آسانی انجام می شود. اصول علمی جذب اتمی بشرح زیر است:
اگر یک محلول شامل ترکیبات فلزی به داخل شعله مانند هوا – استیلن تزریق شود بخار اتمی از فلز تشکیل خواهد شد طریقه انتشار نور بدین ترتیب است که در لامپ مخصوص بعضی از اتمهای فلز به یک سطح انرژی بالا رسیده ئ تشعشعات مخصوص آن فلز را انتشار می دهند پس از تزریق نمونه به دستگاه و تبدیل شدن یونهای فلزی به اتم، اتمها قادر خواهند بود نور منتشر شده از منبع نور را که از میان شعله حاوی اتمهای عنصر عبور می نماید جذب نمایند در حالیکه میزان جذب متناسب با تراکم اتمها در شعله می باشد.
این روش اصولاً خاص یک عنصر به خصوصی است که اندازه گیری می شود زیرا اتمهای یک عنصر بخصوص فقط می تواند تشعشعات طول موج مشخص خودشان را جذب نمایند به بیان دیگر نور یک فرکانس مشخص فقط می تواند به وسیله عنصر بخصوصی که مشخص است جذب شود بنابراین تداخلات طیفی که در روشهای انتشار مزاحم می باشند ندرتاً اتفاق می افتد(2).

 

3-2-2- قسمتهای مختلف دستگاه جذب اتمی :

 

1- یک منبع نورانی پایدار که رزونانس خطی عنصری را که باید تعیین مقدار شود انتشار میدهد منبع نور معمولاً لامپی کاتدی و تو خالی می باشد که کاتد آن از جنس عنصری که باید تعیین مقدار شود ساخته شده است داخل لامپ از گاز بی اثر آرگون یا نئون در فشار کم پر شده است. انتشار نور از این لامپ طوری تنظیم یافته که منحصراً تشعشعات آن، نه تشعشعات منتشر شده از شعله در گالوانومتر مشخص نشان می شود.
2- سیستم شعله که نمونه محلول با سرعت یکنواخت به داخل آن تزریق میشود و درجه حرارت به اندازه کافی است تا بخار اتمی انواع مورد نیاز از ترکیبات موجود در محلول را بتواند تولید نماید. عمومی ترین شعله مورد استفاده سیستم هوا – استیلن می باشد.
3- یک مونوکروماتور که خطوط رزونانس مختلف را از هم جدا می کند و فقط نور یکنواخت عبور می دهد.
4- یک فتومولتی پلاتر (دستگاه تقویت کننده) که نور را تبدیل به انرژی نموده و شدت آنرا تقویت می کند.
قسمتهای مختلف دستگاه جذب اتمی که در بالا بیان گردید در شکل 3-1 نشان داده شده است.
از جمله مزایای جذب اتمی اسپکتروفتومتریکی این است که برای تعداد زیادی از عناصر کاملاً اختصاصی می باشد همچنین در این روش میزان جذب بستگی به مقدار اتمهای آزاد تحریک نشده در شعله دارد که این دسته از اتمها به مقدار فراوان تری از اتمهای تحریک شده وجود دارند بنابراین عناصری نظیر روی و منیزیم که به آسانی تحریک نمی شوند و نتایج خوبی با روش نورسنجی با شعله نمی دهند به آسانی با متد جذب اتمی اندازه گیری می شوند مزیت دیگر ان در این است که با نصب کربن رودا تمایزر میتوان غلظت بسیاری از فلزات در حدود میکروگرم در لیتر را تعیین مقدار نمود در موقع اندازه گیری با سیستم C.R.A سیستم شعله با یک لوله استوانه ای شکل کوچک از گرافیت تعویض می شود(2).

 

 

 

3-2-2-1 روش کار با دستگاه جذب اتمی با شعله:
ابتدا دستگاه اندازه گیری باید تنظیم شود و صفر آن با تزریق آب مقطر به داخل شعله مشخص گردد. پس از روشن شدن لامپ نور بدون مانع از لامپ کاتدی انتشار می یابد و بر روی تقویت کننده می افتد و وقتی محلولی حاوی یونهای قابل جذب به داخل دستگاه تزریق می شود قسمتی از نور منتشره از لامپ کاتدی جذب خواهد شد در نتیجه شدت نور روی دستگاه تقویت کننده کاهش می یابد.
محلولهای استاندارد عنصری که باید تعیین مقدار شود برای رسم منحنی کالیبراسیون به کار می روند تا از روی آنها بتوان غلظت عناصر در نمونه های مورد آزمایش را با توجه به میزان جذب نور آنها به دست آورد.
به علت اختلاف بین مدلها و ساخت دستگاه اتمیک ابسورپشن توسط کارخانجات سازنده آموزش یک متد فرموله شده قابل قبول برای طرز کار با هر وسیله امکان پذیر نمی باشد ولی بطور کلی طرز عمل به ترتیب زیر می باشد:
1- لامپ کاتدی فلزی را که می خواهیم تعیین مقدار نماییم در دستگاه نصب کرده و طول موج آنرا تنظیم می کنیم.
2- عرض شکاف (دیافراگم) را بر طبق کارخانه سازنده دستگاه برای عنصری که اندازه گیری می شود تنظیم می نمائیم.
3- دستگاه را روشن و مقدار جریان قراردادی بوسیله کارخانه تولید کننده را برای لامپ کاتدی به کار می بریم.
4- فرصت می دهیم که دستگاه گرم شده منبع انرژی ثابت شده. این مرحله معمولاً 10 تا 20 دقیقه زمان نیاز دارد بعد از گرم شدن دستگاه در صورت نیاز مجدداً جریان را تنظیم می کنیم.
5- شعله پخش کن را نصب می نمائیم(2).

 

دانلود با لینک مستقیم


دانلود مقاله فلزات سنگین