اختصاصی از
فی لوو تحقیق درباره بررسی مدلسازی واکنش کاتالیستی اکسایش متانول به فرمالدیید در یک راکتور بستر سیال دانلود با لینک مستقیم و پر سرعت .
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه13
بخشی از فهرست مطالب
چکیده
بخش تجربی
مواد شیمیایی
روش آزمایش
نتیجهگیری نهایی
بهینهسازی پویای راکتور شکست حرارتی اتیلن دی کلرید
چکیده
مقدمه
است به طور معمول از اکسایش کاتالیستی متانول در راکتورهای بستر ثابت به دست میآید. در این تحقیق فرایند ذکر شده در راکتور بستر سیال مورد مطالعه قرار گرفته است. بدین منظور یک راکتور بستر سیال به قطر 22 میلیمتر و طول 50 سانتیمتر از جنس فولاد زنگنزن که قابلیت کنترل دما و شدت جریان مواد را داراست ساخته شده است. اثر پارامترهای متفاوت عملیاتی بر عملکرد راکتور بالا مطالعه شده است. نتیجهها با سه مدل سه فازی تطبیق داده شده و میزان دقت مدلها در پیشبینی رفتار راکتور مشخص شده است. نتیجهها نشان میدهد که تحت شرایط مناسب میزان تبدیل متانول به فرمالدیید تا 89 درصد افزایش مییابد و با بالا رفتن سرعت گاز در بستر سیال این میزان کاهش مییابد که دلیل آن کاهش زمان اقامت و در نتیجه کاهش تماس متانول با فرمالدیید است. بررسی مدلها نشان میدهد که بیشترین انحراف مربوط به مدل Shiau _ Lin با 23 درصد خطا و بیشترین تطابق مربوط به مدل El_Rafai و El_Halwagi با 10 درصد خطا میباشد. بنابراین در این واکنش جریانهای برگشتی به دلیل کوچک بودن قطر راکتور در مقایسه با طول آن از اهمیت کمتری برخوردار است.
مقدمه
بسترهای سیال از جمله دستگاههای مهم عملیاتی در فرایندهای شیمیایی هستند که درآنها محدودیتهایی از قبیل انتقال حرارت یا نفوذ وجود دارد. از جمله مزایای راکتورهای بستر سیال نسبت به راکتورهای بستر ثابت کنترل دمای بهتر، عدم وجود نقطههای داغ در بستر، توزیع یکنواخت کاتالیست در بستر و عمر طولانی کاتالیست است. بنابراین انجام فرایندها در بستر سیال میتواند حایز اهمیت باشد. یکی از موارد مهم در بسترهای سیال مدلسازی آنهاست. مدلسازی راکتورهای بستر سیال ابتدا با نظریه محیط دوفازی آغاز شد. در بین مدلهای اولیه دوفازی میتوان از مدل Davidsoin_Harrison نام برد.
در این مدل فاز چگال (امولسیون) و فاز حبابهای گاز دو فاز مدل را تشکیل میدهند و افزون بر این فرض شده است که فاز امولسیون در حداقل سرعت سیالیت باقی میماند و نیز قطر حباب در طول بستر ثابت بوده و واکنش در فاز امولسیون اتفاق میافتد و انتقال جرم بین دو فاز صورت میگیرد. این مدل بر مبنای اصول هیدرودینامیک بنا شده است ولی جریانهای برگشتی در فاز امولسیون را درنظر نمیگیرد. Fryer مدل جریان برگشتی غیر همسو را که بر مبنای مدل بستر حبابی بود ارایه کرد و سرعت جریان برگشتی جامد را برابر با حداقل سرعت سیالیت در نظر گرفت.
مدل سه فازی Kunii و Levenspiel بر اساس اصول هیدرودینامیک بنا شده و بستر از سه ناحیه حباب، ابر و امولسیون تشکیل شده به طوری که دنباله به عنوان بخشی از فاز ابر در نظر گرفته میشود. حباب صعود کننده از مدل Davidsoin پیروی میکند و فاز امولسیون در شرایط حداقل سیالیت باقی میماند که در آن پارامتر اصلی قطر حباب است که در بستر توزیع میشود و یک قطر موثر در طول بستر در نظر گرفته میشود. واکنش درجه اول و جریان در فاز حباب، پلاگ در نظر گرفته میشود. تبادل جرم بین فازهای حباب _ ابر و ابر_ امولسیون صورت میگیرد.
دانلود با لینک مستقیم
تحقیق درباره بررسی مدلسازی واکنش کاتالیستی اکسایش متانول به فرمالدیید در یک راکتور بستر سیال