فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایانامه اهمیت کشت و زرع

اختصاصی از فی لوو پایانامه اهمیت کشت و زرع دانلود با لینک مستقیم و پر سرعت .

پایانامه اهمیت کشت و زرع


پایانامه اهمیت کشت و زرع

شلینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:17

فهرست و توضیحات:
چکیده
مقدمه
فصل اول : کلیات تحقیق
پیشگفتار
بیان مسئله
سوالات تحقیق
اهداف تحقیق

 

مقدمه :

 

با آگاهی از اهمیت کشت و زرع و توجه به این مطلب که بخش کشاورزی حدود 27% از تولید ناخالص و 80% از محصولات اساسی مورد نیاز کشور تولید کرده و صادرات غیر نفتی نیز سهمی معادل40% دارا می باشد در می یابیم که بخش کشاورزی در هر کشور می تواند نقش بسیار مهمی را در تولید ناخالص آن کشور ایفا کند .

این امر از طریق تولید محصولات کشاورزی مصرف در داخل و صادرات به سایر کشورها و ایجاد زمینه های اشتغال زایی امکان پذیر است . پس حفظ و توسعه این بخش باید در سرلوحه اهدافمان قرار گیرد .

پرورش قارچ خوراکی و صدفی یکی از تکنولوژی هایی است که با ترویج و توسعه آن 

می توان گام موثری در تامین مواد غذایی ، ایجاد اشتغال جنبی مناسب و افزایش سطحی در آمد کشاورزی برداشت . البته این تکنولوژی جوان در شهرهای بزرگ ایران با تاسیس کشت و صنعتهای تولید قارچ بخصوص در اطراف تهران با توجه به مناسب بودن شرایط جوی در اکثر نقاط ایران در کشورما در حال توسعه زیادی است .


دانلود با لینک مستقیم


پایانامه اهمیت کشت و زرع

دانلود مقاله خاک شناسی

اختصاصی از فی لوو دانلود مقاله خاک شناسی دانلود با لینک مستقیم و پر سرعت .

 

 خاک چیست؟
خاک مخلوط پیچیده ای از مواد معدنی، آلی و موجودات زنده است. خاک یکی از محصولات محیط است که دائماً در معرض تغییر و نمو قرار دارد. خاک همیشه و در همه حال توسعه می یابد حال یا به آهستگی در مناطق خشک و یا سریع در مناطق مرطوب.
در سالهای دور خاک بعنوان بخش بی ارزش پوسته زمین به شمار می رفت. تا اینکه در سال ۱۸۸۰ میلادی توسط دانشمندی روسی به نام "داکوچائف" بعنوان بخشی زنده و دارای ارزش مورد مطالعه قرار گرفت.
خاک مخلوط پیچیده ای از مواد معدنی، آلی و موجودات زنده است. خاک یکی از محصولات محیط است که دائماً در معرض تغییر و نمو قرار دارد. خاک همیشه و در همه حال توسعه می یابد حال یا به آهستگی در مناطق خشک و یا سریع در مناطق مرطوب.
خاک با یک تکه سنگ خرد شده و یا یک لایه جرم کثیف متفاوت است، خاصه مهم خاک این است که زنده است و موجودات زنده را می پروراند که مثال بارز آن گیاهان هستند. به دیگر بیان میتوان خاک را پوسته ای از زمین نامید که بدون آن زمین خواهد مرد.
پوسته زمین ( در اینجا خاک) بوسیله باد، آب یا فعالیتهای انسان فرسوده می شود و از دیگر سو توسط فرآیند هوا زدگی سنگها یا بعبارت درست تر مواد مادری مجدّداً احیا یا نو می شود. خاک با دیمانسیون سه بعدی تعریف می شود یعنی ارتفاع به علاوه مساحت.
هنگامی که در جاده ای شما در حال حرکت هستید به مقطع بریده تپه کنار جاده ( مقطع طبیعی ) نگاه کنید. می بینید که خاک روی آن، از لایه های مختلفی با رنگهای متفاوت تشکیل شده است. دقت کنید که به چه ترتیبی ضخامت لایه های منفرد از بالا به پائین تغییر می کند. چرا لایه های پائینی خاک تپه معمولاً ضخیم تر هستند؟ چرا لایه بالائی خاک تیره تر است؟ پاسخ همه این سئوالها به چگونگی تشکیل خاک بر می گردد.
به دیگر بیان میتوان خاک را پوسته ای از زمین نامید که بدون آن زمین خواهد مرد
تصویر از رایزو باکتریای خاک تهیه شده است.
تصور هر شخص از خاک بر اساس استفاده ای است که از آن می کند.
یک مهندس عمران، از خاک بعنوان زیر بنا و مهد ساختمان، جاده و بزرگراه نگاه می کند.
یک مهندس معدن، خاک را پوششی می بیند که باید آنرا بردارد تا به معادن و کانی های گرانبها دست پیدا کند.
یک طراح فضای سبز به خاک بعنوان منبعی برای ساخت یک پارک یا باغ زیبا می نگرد.
و بالاخره، مهندسین کشاورزی و منابع طبیعی به خاک بعنوان منبعی برای تولید محصولات کشاورزی و جنگل نگاه می کنند.
ما می توانیم و باید علوم متداول مثل شیمی، فیزیک و بیولوژی را در مطالعات خاک بکار ببریم. همانطوری که بسیاری از دانشمندان در طول سالیان متمادی اینکار را انجام داده اند. ولی تحقیقات اخیر نشان دهنده این است که باید تحقیقات خود را تنوع ببخشیم و تغییراتی در آن بوجود آوریم. چالش پیش روی ما نگاه به کل سیستم طبیعی همراه با پیشرفت علوم در سایر زمینه ها و روابط متقابل بین آنهاست.
آیا میتوان روی موجودات زنده خاک بدون توجه به محیط زیست مطالعه نمود؟ آیا میتوان یک ذره از خاک را بدون در نظر گرفتن ذرات کنار آن در یک خاکدانه مطالعه نمود؟ مشخصاً، دانش بیشتری را باید بدست آوریم. اگر چشمان خود را بیشتر باز کنیم تا از ماورای حصاری که علوم متداول یاد شده برای ما ترسیم نموده اند و با زاویه ای دیگر به مسائل بنگریم. دانشمندان خاک (خاکشناسی) در زمینه های شیمی، فیزیک و بیولوژی در اندیشه چنین کاری خواهند بود، به شرطی‌که وقتی به خصوصیات فیزیکی، شیمیائی و بیولوژیکی خاک فکر می کنند، پویایی و روابط متقابل آنرا از یاد نبرند...
●● خصوصیات فیزیکی، شیمیائی و بیولوژیکی
● خصوصیات فیزیکی
خاک‌ها مرکب از سه فاز یا حالت جامد، مایع و گاز هستند. مطالعه فیزیکی این سه فاز، فیزیک خاک نام دارد و مشتمل بر موارد زیر میباشد:
- دانسیته و تخلخل
- بافت
- ساختمان
- رنگ
- نگهداری و حرکت آب در خاک
هر چند بیشتر این خصوصیات خاک از مواد مادری آن به ارث می رسند ولی بعضی تلاشهای انسانی می توانند برخی از این خصوصیات را تغییر دهند بطوریکه حاصلخیزی خاک تامین شود. ساختمان مدوری که در شکل دیده می شود یک نمونه از خاکی است که نمک های سدیمی زیادی دارد. محصولاتی که در چنین خاکهائی رشد می کنند مشکلات فراوان نفوذپذیری ریشه های گیاهی را خواهند داشت.
● خصوصیات شیمیائی
مطالعات مربوط به خواص شیمیائی خاک به خصوصیات شیمیائی خاک که بستگی به ترکیب معدنی، مواد آلی و محیط دارد، می پردازد.
همانطور که می دانیم، واکنش‌های شیمیائی هنگامی رخ می دهند که مواد یا ترکیب و یا تجزیه شوند بطوریکه با مواد اولیه از نظر ماهوی تفاوت دارند. واکنش ها در حین انجام یا انرژی از دست می دهند یا انرژی خواه هستند. مواد جدید وقتی بوجود می آیند که پیوندهای بین اتمها یا یونها تشکیل می شود، پیوندهائی شکسته می شوند و یا وقتی اتمها آرایش جدیدی به خود می گیرند. یونها اتمهائی هستند که بواسطه از دست دادن یا گرفتن الکترون ها باردار شده اند، مثبت یا منفی. یونهای با بار مخالف همدیگر را جذب می کنند،در حالیکه یونهای با بار یکسان همدیگر را دفع می کنند. یک مثال ساده ترکیب اکسیژن و هیدروژن و تشکیل آب است.
فهم شیمی خاک در فهم تشکیل خاک و حاصلخیزی نقش مهمی دارد. چگونگی شکسته شدن سنگها و کانی ها و تبدیل آنها به ترکیبات جدید برای درک چگونگی هوا دیدگی و فرسایش خاک ضروری است. نیزچگونگی تبدیل و تشکیل مواد معدنی خاکها منجر به حاصلخیزی بهتر و روشهای برتر آزمایشهای خاک منجر می شود. تصویر، یک مقطع نازک از مواد مادری خاک را زیر یک میکروسکوپ پلاریزان نشان می دهد.
در این تصویر، به ترتیب پیچیده و اندازه کانی ها و ساختمانهای متخلخل توجه کنید . هر کانی دارای قابلیت حلالیت و همچنین مقاومت به هوادیدگی منحصر بفرد می باشد . در کانی های مشابه ، ذرات کوچکتر سریعتر حل می شوند به علت اینکه دارای سطح تماس ( در واحد جرم ) بیشتری هستند و این سطح در معرض فرایند هوا دیدگی می باشند.
● خصوصیات بیولوژیکی
بیولوژی خاک مطالعه موجودات زنده در خاک است . تعداد زیادی باکتری ، قارچ ، اکتینو مایست ، کرمها ، حشرات ، پستانداران و جوندگان کوچک در خاک زندگی می کنند . بسیاری از این موجودات زنده به تامین حاصلخیزی خاک بواسطه تجزیه باقیمانده های گیاهی و جانوری که منجر به گردش مجدد عناصر غذایی می شود کمک می کنند . تاثیر متقابل بین موجودات مختلف یک موضوع بسیار جالب در علم خاک است . یک مثال از این تاثیر متقابل همیاری باکتری با ریشه گیاهان است که در تصویر نشان داده شده است .اغلب این همیاری به فواید دو طرفه منجر میشود.
خاک
خاک‌ها مخلوطی از مواد معدنی و آلی می‌باشند که از تجزیه و تخریب سنگ‌ها در نتیجه هوازدگی بوجود می‌آیند که البته نوع و ترکیب خاک‌ها در مناطق مختلف بر حسب شرایط ناحیه فرق می‌کند. مقدار آبی که خاک‌ها می‌توانند بخود جذب کنند. از نظر کشاورزی و همچنین در کارخانه‌های راه‌سازی و ساختمانی دارای اهمیت بسیاری است که البته این مقدار در درجه اول بستگی به اندازه دانه‌های خاک دارد.
هرچه دانه خاک ریزتر باشد، آب بیشتری را به خود جذب می‌کند که این خصوصیت برای کارهای ساختمان‌سازی مناسب نیست. بطور کلی خاک خوب و حد واسط از دانه‌های ریز و درشت تشکیل یافته است. تشکیل خاک‌ها به گذشت زمان ، مقاومت سنگ اولیه یا سنگ مادر ، آب و هوا ، فعالیت موجودات زنده و بالاخره توپوگرافی ناحیه‌ای که خاک در آن تشکیل می‌شود بستگی دارد.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   15 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله خاک شناسی

دانلودمقاله جذب فسفر توسط گیاهان:از خاک تا سلول

اختصاصی از فی لوو دانلودمقاله جذب فسفر توسط گیاهان:از خاک تا سلول دانلود با لینک مستقیم و پر سرعت .

 

 

 


P یک عنصر غذایی مهم در گیاهان است که حدود 2/0 درصد از وزن خشک گیاه را تشکیل می دهد. P یک جزء مولکولهای کلیدی مانند اسیدهای نوکلئیک، فسفولیپیدها و ATP است و در نتیجه گیاهان بدون مقدار کافی از این ماده غذایی نمی توانند رشد کنند. P همچنین در کنترل و اکنشهای آنزیمی کلیدی و در تنظیم مسیرهای متابولیسمی نقش دارد.
بعد از N ، P دومین عنصر غذایی پر مصرف محدود کننده برای رشد گیاه است. این مقاله درباره P در خاک و جذب آن توسط گیاهان، انتقال از میان غشاهای سلولی، تقسیم بندی و بازپراکنی در داخل گیاه تمرکز می کند. ار بر روی P در گیاهان عالیتر متمرکز می شویم در حالیکه مکانیسم های تشابهی نشان داده شده اند که در جلبکها و قارچها بکار می روند.

 

فسفر در خاک
اگر چه مقدار کل P در خاک ممکن است زیاد باشد، اما اغلب به فرمهای غیر قابل استفاده یا به فرمهایی که فقط در خارج از ریزوسفر قابل استفاده است وجود دارد. در بسیاری از سیستم های کشاورزی که در آنها کاربرد P در خاک برای تضمین محصول زیاد گیاه ضروری است، بازیافت P بکار برده شده بوسیله گیاهان درفصل رویش بسیار پایین است، زیرا در خاک بیش از 80 درصد از P بخاطر جذب سطحی، بارندگی یا تبدیل شدن به فرم آلی تثبیت شده و قابل جذب توسط گیاها نخواهد بود.
P در خاک به شکلهای مختلفی مانند P آلی و معدنی یافت می شود(شکل1). مهم است تاکید شود که 20 تا 80 درصد از P در خاکها به فرم آلی یافت می شود، که از آن فیتیک اسید(اینوریتول هگزافسفات) معمولا جزء اصلی است. باقیمانده در بخش معدنی که شامل 170 فرم معدنی از P است یافت می شود. میکروبهای خاک فرمهای بی حرکت P را به محلول خاک آزاد می کنند و همچنین مسئول توقف تحرک P هستند. مقدار کم P موجود در خاک جذب آن توسط گیاه را محدود می کند. بیشتر مواد معدنی محلول مانند K در خاک از طریق جریان توده ای و انتشار حرکت می کنند اما P عمدتا بوسیله انتشار حرکت می کند. از آنجا که سرعت انتشار P پایین است( تا متر مربع بر ثانیه)، سرعت جذب توسط گیاهان ناحیه8 ای در اطراف ریشه بوجود مس اورد که خالی از P است.
مورفولوژی ریشه گیاه برای افزایش جذب P اهمیت دارد زیرا ساختارهای ریشه ای که نسبته سطح به حجم بیشتری دارند(سطح تماس بیشتری با خاک داشته و دسترسی به منابع غذای خاک دارند.) به این دلیل میکرویزاها برای کسب P توسط گیاه اهمیت دارند زیرا ریسه های قارچی مقدار خاکی که ریشه های گیاهان جستجو می کنند، سطح تماس ریشه های گیاهان با خاک را افزایش دهند. در گونه های گیاهی خاص، دسته های رشیه ای(ریشه های پروتئوئید) در واکنش به محدودیت P شکل گرفته اند. این ریشه های تخصص یافته مقادیر زیادی از اسیدهای آلی(تا 23 درصد از فتوسنتز خالص) تراوش می کنند که خاک را اسیدی کرده و یونهای فلزی اطراف ریشه ها را شلات می کنند که منجر به آماده سازی(تحریک) P و تعدادی از ریز مغذی ها می شوند.
جذب P از میان غشای پلاسمایی و تونوپلاست
جذب P یک مشکل برای گیاهان مطرح می کند، زیرا غلظت این ماده معدنی در محلول خاک پاین است اما نیاز گیاه بالاست. شکلی زا P که به آسانی توطس گیاهان دریافت می شود Pi است که غلظت آن به ندرت از 10 میکرومول در محلولهای خاک تجاوز می کند. بنابرانی گیاهان باید ناقلین خاصی در مرز ریشه / خاکم برای اخذ Pi از محلولهای با غلظت میکرومولار داشته باشند، علاوه بر مکانیسم های دیگر برای انتقال Pi از میان غشاهای بین بخشهای درون سلولی، جایی که غلظت Pi ممکن است 1000 مرتبه بیشتر از محلول خارجی باشد. همچنین باید یک سیستم برون ریزش وجود داشته باشد که در باز پراکنی این منبع گرانبها زمانی که P خاک دیگر در دسترس و یا کافی نیست، نقش ایفا کند.

 

شکلی که Pi در محلول وجود دارد نسبت به PH تغییر می کند. PK ها برای تفکیک H3PO4 به H2PO4 به به ترتیب 1/2 و 2/7 است. بنابراین در PH زیر 6، بیشتر Pi بصورت انواع مونووالان وجود خواهد داشت، در حالیکه H3PO4 و فقط به نسبت های جزئی وجود خواهند داشت. بیشتر مطالعات بر روی جذب Pi وابسته به PH در گیاهان عالیتر نشان داده اند که میزان جذب در PH بین 5 و6 جایی که غالبیت دارد، بیشترین است، که پیشنهاد می کند که Pi به فرم مونووالان جذب می شود.
تحت شرایط فیزیولوژیک طبیعی یک نیاز برای انتقال پر انرژی Pi از میان غشاهای پلاسمایی از خاک به گیاه وجود دارد بخاطر غلظت نسبتا بالای Pi در سیتوپلاسم و پتانسیل غشایی منفی که ویژگی سلولهای گیاهی است. این نیاز یه انرژی برای جذب Pi بوسیله اثرات مهار کننده های متابولیک که جذب Pi را به سرعت کاهش می دهند اثبات شده است. مکانیکهای دقیق انتقال غشایی هنوز روشن نشده، اگر چه کوترسپورت Pi با یک یا چند پروتون بهترین انتخاب بر مبنای مشاهدات زیر است.
افزودن Pi به ریشه های گرسنه منتهی به دپلاریزاسیون غشای پلاسمای و اسیدی شدن سیتوپلاسم می شود. دپلاریزاسیون نشان می دهد که Pi به آسانی بصورت و یا وارد نمی شود، هر دوی آنها منجر به هیپر پلاریزاسیون غشا می شوند. از این نتایج احتمال می رود که Pi با یونهای با شارژ مثبت کوتر سپورت می شود. کوترسپورت Pi با یک کاتیون وابسته به بیش از 1 / C+ یا بیش از 2 / C+ کاتیون است که منجر به درون ریزش خالص شارژ مثبت می شود و بنابراین به دپلاریزاسیون غشایی مشاهده شده منتهی می شود. اسیدی شدن سیتوپلاسم وابسته به انتقال Pi پیشنهاد می کند که کاتیون H+ است، اما اگر انواع منتقل شده باشند علیرغم نوع کاتیون اسیدی شدن اتفاق می افتد چون در سیتوپلاسم دستخوش تفکیک به و H+ می شود. برای اثبات کوتر سپورت H+ نیاز به سنجش همزمان یا حداقل قابل مقایسه درون ریزش Pi و تغییر القا شده در PH سیتوپلاسمی است. جذب Pi از میان غشاهای پلاسمایی در سلولهای جانوری بطور طبیعی شامل کوترسپورت با Na+ است. سیستم های جذب Pi با تمایل بالا با انرژی Na (سدیمی) همچنین در سیانو باکتریها و جلبکهای سبز یافت شده اند. در بعضی از موجودات مانند ساکارومیس سرویزیه هر دو سیستم های جذب Pi وابسته به H+ و Na+ شرح داده شده اند. وابستگی جذب Pi به Na+ در گیاهان عالیتر هنوز اثبات نشده است، اما این ممکن است تا حدودی بخاطر این باشد که مطالعات اندکی این شیوه ممکن از جذب Pi انرژی دار شده را بررسی کرده اند.
انتقال Pi از سیتوپلاسم به واکوئل شامل یکسری پارامترهای ترمو دینامیکی متفاوت از آنهایی که برای غشای پلاسمایی بکار می روند، می باشد که این عمدتا بدلیل غلظتهای میلی مولار در سیتوپلاسم و واکوئل در مقایسه با غلظتهای میکرومولار در خاک است. برآوردهای اندکی از غلظتهای سیتوزولی و واکوئلی Pi موجود است. هر چند زمانی که ذرت در غلظتهای Pi مشابه آنچه در خاک یافت می شود.(یعنی 10 میکرومول) رشد داده شد غلظت Pi سیتوپلاسم سلول ریشه تخمین زده شد که بیشتر از غلظت واکوئلی باشد. همچنین زمانیکه گیاهان سویا در محلولهای 50 تا 100 میکرومول Pi رشد داده شدند، معلوم شد که غلظتهای Pi سیتوپلاسم سلول برگ بیشتر از غلظتهای واکوئلی است. از آنجا که پتانسیل غشایی واکوئل نسبت به سیتوپلاسم معمولا اندکی مثبت تر است انتقال Pi به واکوئل نیاز به انرژی ندارد. در گیاهان تامین شده با غلظتهای بالایی از P ، به نظر می رسد که Pi در عرض تونوپلاست نزدیک به تعادل الکتروشیمیایی باشد. در یکی از اندک مطالعاتی که در آن انتقال تونوپلاستی بررسی شده است، جذب Pi به داخل واکوئل های جدا شده از برگهای جو با P کافی نشان داده شده است که از یک وابستگی غلظت مونوفازی تقریبا خطی وابسته به تا حداقل 20 میلی مول پیروی می کند و مستقل از انرژی ATP بود. اگرچه در واکوئلهای جداشده از سلولهای محروم از Pi ، سرعت جذب Pi بسیار بالاتر و وابسته به ATP بود، علیرغم این واقعیت که غلظتهای پایین تر Pi در واکوئل ها باعث تجمع غیر فعال Pi می شود. این موضوع یک حذف مهار یا فعالسازی یک ناقل ثانویه در تونو پلاست را در واکنش به گرسنگی Pi پیشنهاد می کند. وابستگی غلظت جذب Pi در واکوئلها از سلولهای محروم از Pi گزارش نشده است، یک واکنش دوفازی وجود یک ناقل ثانویه را حمایت می کند که ممکن است زمانیکه میزان Pi محدود شده است، نقش مهمی در حفظ هومئوستاز Pi ایفا می کند فرایند آماده سازی Pi واکوئلی بدنبال گرسنگی Pi احتمالا نیاز به انتقال وابسته به انرژی از میان تونوپلاست دارد که مکانیسم آن شناخته نشده است، اگر چه یک سیمپورت / H+ از لحاظ ترمودینامیکی محتمل است. هنوز مطالب زیادی درباره مکانیسم های ویژه انتقال Pi واکوئلی در گیاهان عالیتر و نقشه که این مکانیسم ها در بافری کردن غلظت Pi سیتوپلاسمی ایفا می کند ناشناخته باقی مانده است.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  25  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله جذب فسفر توسط گیاهان:از خاک تا سلول

طرح لایه باز مصالح ساختمانی 14

اختصاصی از فی لوو طرح لایه باز مصالح ساختمانی 14 دانلود با لینک مستقیم و پر سرعت .

طرح لایه باز مصالح ساختمانی 14


طرح لایه باز مصالح ساختمانی 14

طرح لایه باز مصالح ساختمانی

کاملا لایه باز و مناسب برای چاپ بر روی بنر،تابلو و تبلیغات

سایز 120*300

رزولوشن 300


دانلود با لینک مستقیم


طرح لایه باز مصالح ساختمانی 14

طرح لایه باز مصالح ساختمانی 9

اختصاصی از فی لوو طرح لایه باز مصالح ساختمانی 9 دانلود با لینک مستقیم و پر سرعت .

طرح لایه باز مصالح ساختمانی 9


طرح لایه باز مصالح ساختمانی 9

طرح لایه باز مصالح ساختمانی

کاملا لایه باز و مناسب برای چاپ بر روی بنر،تابلو و تبلیغات

سایز 120*300

رزولوشن 300


دانلود با لینک مستقیم


طرح لایه باز مصالح ساختمانی 9