لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:132
فهرست:
مشتق گیری ازسری توانی
انتگرال گیری از سری توانی
سری دو جمله ای
قضیه تیلور موارد کاربرد آن
سریهای تیلور و مک لورن
مختصات قطبی
رابطه بین مختصات قطبی و قائم
نمودار معادلات قطبی
مقدمه و توضیحات:
یک سری به شکل * که در آن و.... اعدادی ثابت هستند، یک سری توانی از x می نامند . معمولاً برای راحتی سری *به صورت می نویسد در حالت کلی تر سری توانی به صورت است .
اگر به جای x مقدار ثابت r در نظر بگیریم سری توانی به یک سری عددی تبدیل می شود و همگرایی آن از روشهای همگرایی سری های عددی استفاده می شود .
نکته : هرگاه سری توانی به ازاء x=r که همگرا باشد ، آنگاه به ازاء هر x که به طور مطلق همگرا است هرگاه سری به ازاءx=s واگرا باشد آنگاه به ازاء هر x که نیز واگرا است .
تعریف بازه همگرایی: مجموعه نقاطی که به از آنها سری همگرا باشد ، همواره یک بازه است که به آن بازه ، بازه همگرایی می گویند.
نکته: سری توانی یکی از سه رفتار زیر را دارد :
الف ) سری فقط به ازاءx=0 همگرا است در این صورت بازه همگرایی I بازة [0,0] است
ب ) سری به ازاء هر x همگرا است د راین صورت است
ج) سری به ازاء مقادیر ناصفری از x همگرا و به ازاء سایر مقادیر واگراست
تحقیق در مورد سریهای توانی