فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله بررسی اثر خطا ی اتصالی در هادی های CTC

اختصاصی از فی لوو دانلود مقاله بررسی اثر خطا ی اتصالی در هادی های CTC دانلود با لینک مستقیم و پر سرعت .

 

 

 

مقدمه
طراحی ترانسفورماتور یعنی آماده سازی نقشه‌های اجرایی ترانسفورماتور اولین گام در ساخت آن است.
برای شروع کار محاسبه و طراحی حداقل مشخصات زیر باید ارائه شود:
- قدرت نامی ترانسفورماتور
- ولتاژهای فشار قوی و ضعیف و گروه برداری
- امپدانس اتصال کوتاه، تلفات بی باری و بارداری
- ارتفاع، دما، درصد رطوبت نسبی و آلودگی محیط نصب
- استانداردها
در بعضی مواقع پاره‌ای مشخصات ویژه نیز اعمال می‌نمایند به عنوان مثال محدودیت در چگالی شار یا چگالی جریان و یا محدودیت در ابعاد فیزیکی ترانسفورماتور. پس از دریافت اطلاعت و بر اساس مدارک موجود قسمت فعال ترانسفورماتور شامل سیم پیچیها، هسته و مواد عایقی محاسبه می‌وند.
مدارک و استانداردهای مورد استفاده دیگر عبارتند از VDE و DIN و IEC.
ترانسفورماتور طراحی شده را می‌توان به دو گروه نرمال و ویژه تقسیم کرد:
- منظور از ترانسفورماتور نرمال ترانسفورماتور هایی می‌باشند که به طور گسترده در شبکه توزیع مصرف دارند و بدین جهت به طور گسترده تولید می‌شوند . ترانسفورماتورهای 200kVA و 100 50 و 25 ، گروه برداری Yzn5 و نسبت ولتاژی 20kV 4%/0.4kV
- ترانسهای ویژه دارای شرایط خاصی هستند که توسط مشتری ارائه می‌شوند و تولیدی محدود دارند.
ترانسفورماتور های توزیع عموماً دارای سیستم خنک کنندگی ONAN و Tap changer به صورت Off Load می‌باشند که برای ردیف‌ 20 کیلوولت، سه پله و برای ردیف 30 کیلو ولت، پنج پله می‌باشند.
1-2-طراحی
طراحی ترانسفورماتور یعنی اجرای محاسبات مکانیکی جهت دفع حرارت ناشی از تلفات و هم چنین آماده سازی نقشه‌های مکانیکی ترانسفورماتور. مراحل مختلف این کار عبارتند از:
- طراحی هسته
- طراحی ابعاد برد شامل انتخاب نبشی‌ها یا تسمه‌های مناسب
- طراحی ساختمان جمعی سیم پیچیها
- سیم بندیهای فشار قوی و فشار ضعیف (در فشار ضعیف انتخاب شینه‌های انعطاف پذیر در توانهای بالا، خمکاری تسمه‌های خروجی از بوبین جهت تعیین ارتفاع، مهار تسمه‌ها با استفاده از بستهای چوبی، تعیین حداقل فاصله تا مرکز بوشینگها و در فشار قوی با توجه به گروه برداری تعیین قطر و طول سیمهای اتصال دهنده فازها جهت ایجاد گروه برداری مناسب، انتخاب کلید تنظیم ولتاژ)
- طراحی در پوش با توجه به ابعاد و سوراخکاری برد
- طراحی مخزن شامل محاسبات مکانیکی جهت محاسبه تعداد، عمق، گام و ارتفاع و رله‌ها
1-3-آزمایش ها
یکی از مباحث مهم ترانسفورماتور آزمایش و تست ترانسفورماتور برای حصول اطمینان از کیفیت الکتریکی و حرارتی ترانسفورماتور می‌باشد. این آزمایشات طبق استاندارد IEC-60076 انجام می‌شود و به طور کلی به سه بخش تقسیم می‌شوند:
تستهای روتین – تستهای نوعی – تستهای ویژه
1-3-1-تستهای روتین
اینگونه تستها، تستهای غیر مخرب می‌باشند و می بایست طبق استاندارد بر روی تمامی ترانسفورماتورها انجام گیرند. برای ترانسفورماتورهای توزیع این تستها عبارتند از :
- اندازه گیری نسبت تبدیل : این اندازه گیری در بی باری یعنی در حالتیکه ثانویه ترانسفورماتور مدار باز می باشد انجام می پذیرد در این حالت از افت ولتاژ ناشی از جریان بی باری می‌توان صرفنظر کرد.
- گروه برداری: این تست با تست نسبت تبدیل تلفیق شده است چون در صورتیکه نسبت تبدیل درست باشد می‌توان اطمینان پیدا کرد که گروه برداری هم مشکل نخواهد داشت.
- اندازه گیری مقاومت سیم پیچها: مقدار مقاومت سیم پیچ جزء مقادیر گارانتی شده از طرف سازنده نیست اما داشتن آن برای محاسبه تلفات بار در دمای 75 درجه (مطابق استاندارد) و نیز برای تعیین میزان جهش حرارتی سیم پیچ در آزمایش لازم است. این اندازه‌گیری در دمای محیط انجام می‌پذیرد و با توجه به آنکه مقاومت سیم پیچ تابعی از دماست می بایست نتیجه اندازه‌گیری را به دمای 75 درجه انتقال داد. لازم به ذکر است برای ثبت مقاومت اندازه گیری شده مقدار دما نیز باید ثبت شود.
- اندازه گیری شدت جریان و تلفات بی باری: هرگاه ترانسفورماتور تحت ولتاژ و فرکانس نامی قرار گیرد و طرف دیگر آن بی بار باشد تلفات حاصل در ترانسفورماتور را تلفات بی باری و جریانی که در اینحالت ترانسفورماتور می‌کشد را جریان بی باری می‌نامند. این تلفات و جریان برای هر ترانسفورماتور متصل به شبکه حتی در زمانی که از آن بارگیری نمی‌شود وجود دارد بنابراین با توجه به پیوسته بودن آن مقدار آن باید پایین و در محدوده گارانتی باشد. این تلفات شامل تلفات فوکو، هیسترزیس، ژولی و دی الکتریک می‌باشد که از بین این موارد دو مورد آخر با توجه به کوچکی قابل صرفنظر کردن می‌ باشند. این تست از سمت فشار ضعیف انجام می‌شود و تلورانس تلفات بی باری 15درصد و جریان بی باری 30 درصد می‌باشد. موارد زیر در میزان جریان و تلفات بی باری موثر است: کیفیت ورقها، نحوه برش، هسته چینی و فاصله هوایی.
- اندازه‌گیری تلفات اتصال کوتاه: در این تست فشار ضعیف را اتصال کوتاه می‌کنند و ولتاژ فشار قوی را آنقدر افزایش می‌دهیم تا جریان نامی از آن عبور کند، در اینحالت می‌توان گفت که در سمت فشار ضعیف نیز جریان نامی عبور می کند . در این آزمایش نیز با توجه به اینکه دمای محیط در مقدار مقاومت و در نتیجه تلفات بار تاثیر دارد دمای محیط می بایست ثبت شود و همچنین تلفات در دمای 75 درجه محاسبه گردد. مقدار درصد ولتاژ اتصال کوتاه نیز با انتقال مقادیر بدست آمده به دمای 75 درجه محاسبه می‌گردد. درصد امپدانس اتصال کوتاه برای ترانسفورماتورهای تا 250kVA به منظور کاهش تلفات بار در شبکه 4 درصد و برای تستهای بزرگتر جهت کاهش مقدار جریان اتصال کوتاه 6 درصد می‌باشد.
- تستهای عایقی: تستهایی که تاکنون گفته شد جهت اندازه‌گیری پارامترهای ترانس و کنترل مقادیر شده آن بود اما تستهای دیگری نیز وجود دارد که جهت کسب اطمینان از کیفیت عایقی ترانسفورماتور انجام می‌پذیرد این تستها برای ترانسفورماتورهای توزیع عبارتند از :
الف- تست عایقی فشار ضعیف:در این تست فشار ضعیف را به ولتاژ 3kv متصل می‌کنند و فشار قوی و بدنه را به زمین متصل می‌کنند. مدت زمان تست 60 ثانیه می‌باشد. در صورت نامناسب بودن عایقها و شکست آنها آرک خواهیم داشت. هدف از انجام این تست بررسی عایق بین بوبین فشار ضعیف از یک سو و هسته، بدنه و بوبین فشار قوی از سوی دیگر می‌باشد.
ب- تست عایقی فشار قوی: این تست مشابه تست عایقی فشار ضعیف می‌باشد و تنها ولتاژ اعمالی به فشار قوی 50kV بوده و بدنه و فشار ضعیف دارای پتانسیل زمین میش‌وند . هدف از انجام این تست بررسی عایق بین بوبین فشار قوی از یک سو هسته ، بدنه و بوبین فشار قوی از سوی دیگر می‌باشد.
پ- تست ولتاژ القایی: در این تست بطرف فشار ضعیف دو برابر ولتاژ نامی اعمال می‌کنند و در نتیجه در طرف فشار قوی که بی بار است دو برابر ولتاژ نامی القا می‌شود. برای جلوگیری از به اشباع رفتن هسته فرکانس آزمایش را بالا می‌برند. در آزمایشگاه فرکانس تست 150Hz می‌باشد بنابراین طبق رابطه t=120*fn/ft زمان تست 40 ثانیه می‌باشد. این تست برای بررسی کیفیت عایق بین لایه‌های بوبینها و عایق بین فازها انجام می‌ود.
در تستهای عایقی آرک نزدن بستگی به عواملی همچون کیفیت روغن، فاصله عایقی و ایزوله‌ها دارد. جرقه گیرها را برای پرهیز از عملشان در هنگام تست بر می‌دارند.
1-3-2-تستهای نوعی
این آزمایشات به صورت مدل و نمونه ای انجام می‌شوند، بدین ترتیب که معمولاً اولین واحد از یک نوع ترانسفورماتورتحت آزمایش قرار می گیرد. از جمله این تستها می‌توان به تست حرارتی و تست ضربه اشاره کرد.
1-3-3--تستهای ویژه: این تستها بر طبق خواست و با دریافت هزینه انجام می‌گیرد. از جمله این تستها می‌توان به موارد زیر اشاره کرد:
اندازه گیری سطح صدا – تحمل اتصال کوتاه واقعی - اندازه‌گیری‌ هارمونیک جریان بی باری تست بار – تعیین ظرفیت خازنی و تانژانت دلتا- اندازه‌گیری تخلیه جزیی – اندازه‌گیری امپدانس توالی صفر

 

1-4-محاسبات هسته
- فواصل بین ساقهای هسته، فاصله مرکز تا مرکز سیم پیچها که با توجه به قطر سیم پیچها بدست می‌آید.
- وزن کل آهن به کار رفته در هسته محاسبه می شود.
- تلفات اتصال کوتاه محاسبه می شود این تلفات شامل تلفات DC در سیم پیچهای HV,LV میباشد.
- محاسبه %Uk : مهمترین پارامتری که باید به آن برسیم Uk درصد (امپدانس اتصال کوتاه) می باشد.
- P0 را که مربوط به تلفات فوکو و هیتر زمین می‌باشد.
- محاسبه جریان بی باری Io
- محاسبه جریان هجومی
توضیحاتی در مورد پارامترهای مختلف ترانس:
Po (Noload loss)
عبارتست از قدرت اکتیو مصرف شده وقتی که ولتاژ نامی با فرکانس نامی به سیم پیچ اولیه در بی باری اعمال می‌شود و معمولاً شامل تلفات هسته می‌باشد.
تلفات بار (short circuit losses):
تلفات اکتیو که در شرایط نامی در ترانسفورماتور مصرف می‌شود، تلفات بار ناشی از تلفات حرارتی عبور جریان در مقاومت سیم پیچها و تلفات اضافی حاصل از جریان گردابی در سیم می‌باشد.
Uk امپدانس ولتاژ نامی :
امپدانسی است که اگر خروجی را اتصال کوتاه کنیم و درصدی از ولتاژ نامی را اعمال نماییم جریان نامی از خروجی عبور کند. امپدانس ولتاژ نامی در شبکه ایران دارای استاندارد زیر می‌باشد:
برای قدرتهای 25KVA الی 200 KVA : %Uk = 4%
بری قدرتهای بالای 250KVA : %Uk = 6%
Isc جریان اتصال کوتاه:
مقدار جریان در ترمینالهای خط، بعد از اینکه عناصر DC رو به کاهش گذاشتند. در مواقع نامی ، جریان اتصال کوتاه را می‌توان از روی جریان نامی و امپدانس ولتاژ (IN.Uk) بدست آورد.
راندمان: راندمان عبارتست از قدرت اکتیو خروجی به ورودی .

 


تنظیم ولتاژ (Tapping and Tapping rany)
جهت کنترل ولتاژ در سیمهای فشار قوی سرهای اضافی طراحی گردیده‌اند . این محدوده تغییر ولتاژ عبارتست از اختلاف بین ولتاژ طراحی شده و حداکثر و یا حداقل ولتاژ قابل تنظیم سیم پیچ می‌باشد. تنظیم ولتاژ‌ها نسبت به ولتاژ مبنا به صورت مثبت و منفی می باشد.
نکته مهم: نوع کلیدهای استفاده شده در ترانسفورماتورهای توزیع از نوع (off load) off circuit بوده و هنگام عملیات روی کلید و تغییر پله‌های تنظیم ولتاژ می بایست ترانسفورماتور از دو سمت بی برق باشد.
جریان هجومی: جریانی است که در لحظه برقرار کردن برق از سیم پیچ می‌گذرد.
محاسبه مقدار نویز و صدای ترانسفورماتور:
ترانسفورماتورها تولید نویز و سر و صدا می‌کنند. دلیل ایجاد نویز تغییر بعد مغناطیسی می‌باشد. وقتی هسته فرومغناطیس یک ترانسفورماتور مغناطیس میشود در راستا و جهت شار مغناطیس کننده، متناوبا طول و سطح مقطع هسته کم و زیاد می‌شود، این پدیده باعث به وجود آمدن تغییرات کوچکی در ابعاد هسته خواهد شد. از آنجایی که ورقهای فولادی متناوباً ابعادشان را تغییر می‌دهند، هسته نوسان می‌کند و صدای وزوز تولید می‌شود.

 

LA بر حسب DB، شدت صدایی که در یک متری شنیده می‌شود.
- محاسبه مدت زمان اتصال کوتاه:
موقعی که اتصال کوتاه صورت می‌گیرد دو پدیده مهم می‌باشد.
الف: پدیده حرارت بالا
ب: پدیده دینامیکی
الف:
IEC 60076-5 در مورد تحمل اتصال کوتاه ترانسفورماتور است. محاسبات اتصال کوتاه برای اتصال کوتاه در ترمینالهای خروجی وقتی با ولتاژ‌ نامی تحریک شده باشد انجام می‌شود. رایج ترین نوع اتصال برخورد یک فاز به زمین است. استاندارد گفته شده در بالا مجاز دانسته است که دما در پایان اتصال کوتاه ْ250 باشد. در شروع اتصال کوتاه فرض می‌کنیم طبق استاندارد دما ْ105 باشد. ْ145 برای گرم شدن سیم پیچی جا است، که به چگالی جریان اتصال کوتاه و زمان اتصال کوتاه و به ساخت ترانس بستگی دارد.
جریان سیم پیچی‌های اولیه و ثانویه ترانسفورماتور، شارهای مغناطیسی تولید می‌کنند که در هسته آهنی با یکدیگر مخالفند. این شارها در فضای بین دو سیم پیچی جمع شونده‌اند. این شار بین دو سیم پیچی ترانسفورماتور که شار پراکندگی نام دارد نیروهای مکانیکی در جهت عمود بر جهت شار پراکندگی ایجاد می‌کند.

 

1-5-ساختمان هسته:
هسته ترانس به دو روش چیده می‌شود:
1. هسته های اورلپ
2. هسته‌های استپ لپ
هسته اورلپ :
در این روش ورق دوم یک مقدار از ورق اول عقب تر قرار می‌گیرد، ورق سوم جای ورق اول و چهارمی جای دومی و الی آخر، این روش روش چندان مناسبی نمی‌باشد، زیرا علاوه بر زمان بر بودن استحکام مکانیکی کمتری دارد، فاصله هوایی بیشتر خواهد بود و همینطور ایجاد نویز بیشتری خواهد داشت. در طراحی‌های انجام شده عقب نشینی یک ورق نسبت به ورق بعدی 36mm می‌باشد. در روش اورلپ از ورق تکی استفاده می‌شود.
هسته استپ لپ:
در این روش ورقها به صورت پلکانی چیده می‌شوند، به این طریق که 6 ورق نسبت به یکدیگر عقب نشینی دارند مثلاً ورق دوم نسبت به اولی عقب تر قرار می‌گیرد و این عمل تا ورق 6 ام ادامه پیدا می‌کند و سپس دوباره این سیکل تکرار می‌شود . در چیدن استپ لپ حداکثر پیشروی 36mm می‌باشد.

 

 

 


فصل دوم
انواع سیم‌پیچی های ترانسفورماتور وساختمان آنها

 

 

 

2-1-مقدمه
یکی از ادوات بسیار مهم و گرانقیمت در صنعت برق، ترانسفورماتور می‌باشد. اساس اصلی این تجهیز که در آن تبدیل انرژی صورت می‌گیرد، بر اساس دو اصل از اصول الکترومغناطیس می‌باشد، که عبارتند از: 1- یک سیم حامل جریان در اطراف خود میدان مغناطیسی ایجاد می‌کند. 2- اگر یک میدان مغناطیسی متغیر با زمان از درون یک حلقه بگذرد، در آن ولتاژ القاء می‌شود. در ترانسفورماتور این دو اصل توسط مجموعه‌ای از حلقه‌ها، موسوم به سیم‌پیچی و هسته، انجام می‌شود. یک ترانسفورماتور ساده متشکل از دو سیم‌پیچی اولیه و ثانویه ‌می‌باشد که این دو توسط مدار مغناطیسی (هسته) به هم مرتبط گشته‌اند.
2-2-تعاریف
2-2-1سیم‌پیچ
اعمال ولتاژ نامی مربوط به ترانسفورماتور، به مجموعه دورهایی از هادیها که یک مدار الکتریکی را تشکیل می‌دهد صورت می‌گیرد که به آن سیم‌پیچ اطلاق می‌شود. در ترانسفورماتور‌های چند فازه، مجموعه ای از سیم‌پیچ‌ها بر روی یک فاز (بروی یک ساق هسته) قرار می‌گیرند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   86 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله بررسی اثر خطا ی اتصالی در هادی های CTC