لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه13
فهرست مطالب
معادلات فرد هولم
اکنون رفتار این معادلات ماتریسی را در نظر بگیرید. معادله (7-2) یک جواب یکتا دارد
مشروط براینکه K یک ماتریس وارون پذیر باشد. در هر حال اگر Kوارون پذیر باشد، رتبه K از مرتبه آن کوچکتر است و برخی سطرهای آن به طور خطی مستقل خطی از سطرهای دیگر هستند. اگر همین رابطه بین درایه های متناظر در برقرار باشد، تعداد نامتناهی از جوابهای نایکتا موجود است. اگر این چنین نباشد، معادلات ناسازگارندو جوابی وجود ندارد. بنابراین امکان دارد معادله (1-2) یا جواب یکتا داشته باشد، یا بی نهایت جواب، یا بدون جواب.
اکنون معادله (8-2) را به صورت زیر بازنویسی می کنیم
اگر K وارون پذیر باشد، این معادله بردار ویژة و مقدار ویژه غیر صفر وابسته به آن دارد. ممکن است فرض شود که همه مقادیر ویژه با هم متفاوت باشند. وقتی نباشند تعدیل مناسبی را می توان بر نظریه اعمال کرد. اگر ماتریس وارون ناپذیر باشد و رتبه باشد و n-m بردار ویژه متناظر با یک مقدار ویژه صفر وجود دارد. باید توجه شود که در حالت کلی بردارهای ویژه ، که با جوابهای بیان می شوند با یکی نیستند مگر اینکه ماتریس Kمتقارن باشد(در عبارت اخیر، اندیس T که در بالا قرار دارد ترانهاده را نشان می دهد). در هر حال، مقادیر ویژه همیشه مشابه خواهند بود. برخی روابط تعامد را می توان به صورت زیر اثبات کرد: فرض کنیم بردارهای ویژه و متناظر با مقادیر ویژه غیرصفر، نابرابر و باشند
تحقیق در مورد معادلات فرد هولم