فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت بررسی داده کاوی و الگوهای تکرارشونده در جریان داده‌ها

اختصاصی از فی لوو پاورپوینت بررسی داده کاوی و الگوهای تکرارشونده در جریان داده‌ها دانلود با لینک مستقیم و پر سرعت .

پاورپوینت بررسی داده کاوی و الگوهای تکرارشونده در جریان داده‌ها


پاورپوینت بررسی داده کاوی و الگوهای تکرارشونده در جریان داده‌ها

فرمت فایل : power point (قابل ویرایش) تعداد اسلاید : 40 اسلاید

 
 
 
 
 
 
 
 
 
 
 
 
 
 
جریان داده :
■بسیاری از برنامه های کاربردی نوع داده جدیدی به نام جریان داده را تولید و تحلیل می کنند که در آن داده ها به صورت پویا به یک بستر ( یا پنجره ) وارد و یا از آن خارج می شوند .
■خواص جریان داده :
■حجم زیاد و گاه نامحدود
■تغییرپویا
■جریان به درون و خارج با یک ترتیب مشخص
■پیمایش یکبار یا تعدا د محدود
■نیازمند زمان پاسخ سریع ( اغلب بلادرنگ )
■ممکن است دارای چندین منبع باشند .
 
تعریف :
 
■در جریان داده تعدادی یا همه داده های ورودی که باید روی آنها عملیات انجام شود روی دیسک یا حافظه اصلی قرار ندارند و بیشتر به صورت جریان داده پیوسته می رسند .    

 

■جریان داده ها از داده‌‌ های ذخیره شده در موارد زیر متفاوت اند :

 

■عناصر داده ها به صورت بر خط می رسند .

 

■سیستم هیچ گونه کنترلی روی ترتیب عناصر داده‌ای ( روی عناصر جریان یا جریانهای داده‌ای ) ، که جهت پردازش می‌رسند ، ندارد .

 

■جریانهای داده ای به صورت ذاتی از نظر اندازه نامحدود هستند .

 

■یک عنصر از جریان داده پس از پردازش یا نادیده در نظر گرفته می شود یا آرشیو می شود .

 


دانلود با لینک مستقیم


پاورپوینت بررسی داده کاوی و الگوهای تکرارشونده در جریان داده‌ها

خلاصه سازی با شبکه عصبی و کاربرد آن در متن کاوی

اختصاصی از فی لوو خلاصه سازی با شبکه عصبی و کاربرد آن در متن کاوی دانلود با لینک مستقیم و پر سرعت .

خلاصه سازی روشی است برای فشرده سازی منتهای  بسیاربزرگ که به دلیل روش بیشترین درمرتبط نرین اطلاعات موجود درمتن استخراج می شودآنچه که مارادراین محدود می نماید استخراج مرتبط ترین اطلاعات وعامل مهم دیگرخواندنی بودن وقابل فهم بودن متن است.

باتوجه به افزایش روزافزون اطلاعات موجود دراینترنت که به صورت الکترونیکی ارائه می شود، تحقیقات وسیعی برروی این زمینه درحال انجام است تابتوان هرچه سریع تر به مرتبط ترین اطلاعات   است یافت مثلاٌ :اگر شما دراینترنت به دنبال موضوعی باشید حجم وسیعی ازصفحات اینترنتی دراختیار شما قرار نی گیرد حال باید تک تک این صفحات رابه طور کامل  مطالعه ؟؟؟؟؟ به اطلاعات موردنیاز دست پیداکنیم . ولی به کمک روشهای خلاصه سازی می توان به راحتی خلاصه یک صفحه اینترنتی رادرچند جمله مشاهده کنید وسپس به به طور خلاصه سازی کلی صورت می پذیرد:

  • خلاصه سازی مبتنی برفهم مطلب
  • خلاصه سازی مبتنی براستخراج مطالب مهم

روش اول که نام دیگرآن (پرورش طبیعی زبانی) (NLP) می باشد یعنی سعی وآموزش سیستم درفهمیدن متن وباتوجه که قواعد وساختار های زبانی درباره وبایک ساختار جدید تری متن راخلاصه کند دراین روش مانیاز مند گرامر ونحوه جمله نویسی یک زبان خاص هستیم.

قدرت واهمیت این روش دراین است که ازدقت بالاتری برخوردار است ولی به دلیل سرعت پائین وپیچیدگی بسیار زیاد کمتراستفاده می شود.

روش دوم که به روش های آماری معروف هستند ابتدا متن رابه تعداد جملات خود افراد کرده وهر جمله رابایک بردار نگاشت می کنیم که این بردار ها مثال یک سری ویژگی های خاص نظیر تعداد کلمات بعد ویاتعداد اتفاقیی افتادن کلمات کلیدی درآن و... می باشد ازاین روش نیازمند یهای زیادی هستیم تابه یک کلیت ارتمام تنها بوسیله ازاین روش براساس یک سری ویژگی که بردار هرجمله  تشکیل می دهند یادمیگیریم که چ=گونه جملات مزتبط بامفهوم متن راپیدا کنیم.


دانلود با لینک مستقیم


خلاصه سازی با شبکه عصبی و کاربرد آن در متن کاوی

پایان نامه در مورد داده کاوی

اختصاصی از فی لوو پایان نامه در مورد داده کاوی دانلود با لینک مستقیم و پر سرعت .

پایان نامه در مورد داده کاوی


پایان نامه در مورد داده کاوی

 

لینک پرداخت و دانلود *پایین مطلب*

 

 

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

  

 

تعداد صفحه41

 

 

 

فهرست مطالب

 

 

فصل 1 مقدمه.................................... 9

  1. 1 مقدمه..................................... 10

فصل 2 مفاهیم داده کاوی........................ 12

  1. 1 فرایند داده کاوی.......................... 13
  2. 2 دو مفهوم اساسی در داده کاوی............... 14
  3. 3 اساس داده کاوی............................ 15
  4. 4 عوامل ایجاد داده کاوی..................... 16
  5. 5 زیر بنای داده کاوی........................ 16
  6. 6 عناصر داده کاوی........................... 17
  7. 7 مراحل داده کاوی........................... 18
  8. 8 وظایف داده کاوی........................... 21
  9. 9 فنون داده کاوی............................ 22
  10. 10............................ معماری داده کاوی 25
  11. 11................... تکنیک های مختلف داده کاوی 26

فصل 3 کاربرد های داده کاوی.................... 28

  1. 1 معرفی..................................... 29
  2. 2 کاربرد داده کاوی در کتابخانه ها و محیط های دانشگاهی 30
  3. 3 کاربرد داده کاوی در فعالیت شرکت ها........ 32
  4. 4 کاربرد داده کاوی در مدیریت و کشف فریب..... 32
  5. 5 کاربرد داده کاوی در صنعت خورده فروشی...... 33
  6. 6 داده کاوی در مدیریت ارتباط با مشتری....... 33
  7. 7 کاربرد داده کاوی در پزشکی................. 35
  8. 8 وب کاوی................................... 35
  9. 9 تصویر کاوی................................ 37


فهرست مطالب

فصل 4 مثال تفهیمی در مورد داده کاوی........... 38    مثال تفهیمی در مورد داده کاوی................................ 39


 

فهرست اشکال

 شکل 2.1 فنون داده کاوی....................... 22

 شکل 2.2 نمونه ای از یک درخت تصمیم............ 24

 شکل 2.3 طبقه بندی در داده کاوی............... 27

 شکل 3.1 داده کاوی در مدیریت ارتباط با مشتری.. 34

 

 


فهرست جداول

جدول 3.1 کاربردهای داده کاوی درکتابخانه ها.... 31

 

 

 

 

 

فصل اول

مقدمه


1.1 مقدمه :

درطول دهه گذشته باپیشرفت روزافزون کاربرد پایگاه داده ها،حجم داده های ثبت شده به طور متوسط هر5سال 2برابرمی شود. دراین میان سازمان هایی موفقند که بتوانند حداقل 7٪داده هایشان راتحلیل کنند. تحقیقات انجام یافته نشان داده است که سازمانها کمترازیک درصد داده هایشان رابرای تحلیل استفاده می کنند.

به عبارت دیگردرحالی که غرق درداده ها هستند تشنه دانش می باشند.

بنابراعلام دانشگاه MIT دانش نوین داده کاوی (Data mining) یکی ازده دانش درحال توسعه ای است که دهه آینده راباانقلاب تکنولوژی مواجه می سازد.این تکنولوژی امروزه دارای کاربرد بسیاروسیعی درحوزه های مختلف است به گونه ای که امروزه حدومرزی برای کاربرد این دانش درنظرنگرفته وزمینه های کاری این دانش راازذرات کف اقیانوس ها تااعماق فضامی دانند.

امروزه بیشترین کاربرد داده کاوی دربانکها، مراکزصنعتی وکارخانجات بزرگ، مراکزدرمانی وبیمارستانها ،مراکز تحقیقاتی ،بازاریابی هوشمند وبسیاری ازموارددیگرمی باشد.

داده کاوی پل ارتباطی میان علم وآمار،علم کامپیوتر، هوش مصنوعی ،الگو شناسی،فراگیری ماشین وبازنمایی بصری داده می باشد.داده کاوی فرآیندی پیچیده جهت شناسایی الگوها ومدل های صحیح، جدید وبه صورت بالقوه مفید، درحجم وسیعی ازداده می باشد، به طریقی که این الگوها ومدلها برای انسانها قابل درک باشد.داده کاوی به صورت یک محصول قابل خریداری نمی باشد،بلکه یک رشته علمی وفرآیندی است که بایستی به صورت یک پروژه پیاده سازی شود.

کاوش داده ها به معنی کنکاش داده های موجود درپایگاه داده وانجام تحلیل های مختلف برروی آن به منظوراستخراج اطلاعات می باشد.

داده کاوی فرآیندی تحلیلی است که برای کاوش داده ها( معمولاً حجم عظیمی ازداده ها) صورت می گیرد ویافته هابا به کارگیری الگوهایی ،احرازاعتبارمی شوند.هدف اصلی داده کاوی پیش بینی است.وبه صورت دقیق ترمی توان گفت:

" کاوش داده ها شناسایی الگوهای صحیح ،بدیع، سودمند وقابل درک ازداده های موجود دریک پایگاه داده است که بااستفاده ازپردازش های معمول قابل دستیابی نیستند."


 

 

 

فصل دوم

مفاهیم داده کاوی


2.1 فرایند داده کاوی

فرآیند داده کاوی شامل سه مرحله می باشد:

1- کاوش اولیه

2- ساخت مدل یاشناسایی الگو باکمک احرازاعتبار/ تایید


دانلود با لینک مستقیم


پایان نامه در مورد داده کاوی

پایان نامه در مورد داده کاوی

اختصاصی از فی لوو پایان نامه در مورد داده کاوی دانلود با لینک مستقیم و پر سرعت .

پایان نامه در مورد داده کاوی


پایان نامه در مورد داده کاوی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه32

 

فهرست مطالب

داده کاوی اصول وروش کار:

کاهش اندازه داده ها:

دسته بندی وگروه بندی داده کاوی

مقدمه:

جهان پیرامون ما سرشار از داده ها و اطلاعات گوناگون می‌باشد. برای پیش بینی گرایشات و جریان های آتی و به منظور اتخاذ تصمیم گیری بهتر در زمینه علوم، تکنولوژی ، صنعت، بازار وغیره.

انسان همواره با اشتیاقی حریصانه به دنبال کشف دانش از این موداب داده ها بوده است. قدیمی ترین دست نوشت ها کشف شده بر روی لوح های گلی مربوط به چهار قرن قبل از میلاد مسیح می‌باشد. با ساخت کاغذ داده های فراوانی بر روی هزاران جلد کتاب وسایر مستندات دیگر وغیره شد.

توامروزه نیز با افزایش روز افزون کاربرد کامپیوتر ها حجم عظیمی از داده ها دیسک های سخت را به صورت اطلاعات دیجیتالی پر کرده اند. با دراختیار داشتن حجم عظیم داده ها مساله اصلی چگونگی یا فتن جمع‌آوری و به کارگیری روش هایی است که بتوان آنها را در کشف دانش از داده ها  و به کارگیری دانش کشف شده در موارد مختلف به کار گرفت.

اگر چه در دهه های اخیر زمینه جدید با عنوان داده کاوی به رواج یافته است ولی عملکردها و وظایف این علم مثل دسته بندی و جداسازی، از سالها پیش وجودداشته و به کار گرفته می شده اند. با توجه به اینکه هدف داده کاوی کشف الگوهای ناشناخته از داده ها می‌باشد روش های این علم از آموزش ماشین،هوش مصنوعی، آمار وغیره مشتق شده اند. با گسترش این علم روش های داده

 

ش


دانلود با لینک مستقیم


پایان نامه در مورد داده کاوی

پروژه : اجرای تکنیک های داده کاوی

اختصاصی از فی لوو پروژه : اجرای تکنیک های داده کاوی دانلود با لینک مستقیم و پر سرعت .

پروژه : اجرای تکنیک های داده کاوی


پروژه : اجرای تکنیک های داده کاوی

عنوان پروژه : اجرای تکنیک های داده کاوی

قالب بندی : PDF, Word

 

شرح مختصر : داده های مورد استفاده در این پروژه از پایگاه داده دانشگاه آزاد قزوین تهیه شده است، این داده ها اطلاعات ۵۰۰ نفر دانشجوی مقطع کارشناسی رشته مهندسی صنایع (گرایش های تکنولوژی صنعتی و تولید صنعتی) است. که در قالب یک فایل اکسل با ۳۸۳۷۷ رکورد می باشد و سنوات تحصیلی ۱۳۸۴ تا ۱۳۹۰ را شامل می شود. مدلی که برای پیشبینی ارتقاء سطح علمی دانشجویان بر اساس اطلاعات موجود در پایگاه داده دانشگاه آزاد قزوین پیشنهاد میشود در زیر شرح داده میشود : در این مدل پیشنهادی مراحل مختلف فرآیند داده کاوی از جمله جمع آوری دادهها، آماده سازی و پیش پردازش داده ها را روی مجموعه آموزشی ذکر شده انجام داده و الگوریتمهای مختلف داده کاوی از جمله خوشه بندی، قوانین انجمنی، درخت تصمیمگیری، برای دادهها به کار گرفته شده است. ابتدا برای عملکرد بهتر الگوریتمهای داده کاوی یک سری عملیات پیشپردازشی روی دادهها انجام داده شده است. همچنین بعد از تجمیع دادهها داخل یک فایل خصیصههای عددی به خصیصه های گروهی معادل تبدیل شده است. برای مثال تمام نمرات دانشجویان به پنج گروه عالی، خوب، متوسط، ضعیف و مردود تقسیم بندی شده است.

کلمات کلیدی :

مقدمه ای بر داده کاوی

مقدمه ای بر نرم افزار Weka

شرح دیتاست پروژه

اعمال تکنیک درخت تصمیم بروی داده ها

قانون ها

اعمال تکنیک شبکه عصبی بروی داده ها

خروجی شبکه عصبی

اعمال تکنیک خوشه بندی بر وی داده ها

معرفی نرم افزار Weka

آموزش نرم افزار weka

انتخاب الگوریتم رده بندی

انتخاب الگوریتم خوشه ‌بندی


دانلود با لینک مستقیم


پروژه : اجرای تکنیک های داده کاوی