اختصاصی از
فی لوو دانلود مقاله عناصر و اصطلاحات و مدارهای کوانتومی دانلود با لینک مستقیم و پر سرعت .
مقدمه :
در این بخش میخواهیم درباره اصطلاحات و عناصری که در طراحی الگوریتمهای کوانتومی لازم هستند، صحبت کنیم اصطلاحاتی چون کیوبیت، ثبتکنندهها، اعمال کنترل شده حالتهای پایه محاسباتی و … برخی از این عناصر معادلهای کلاسیکی دارند ولی برخی دیگر مختص جهان کوانتومی بوده و معادل کلاسیکی ندارند.
2-1. بیتهای کوانتومی و ثبتکنندهها «Quantum Bit’s and Registers»
bit مفهومی اساسی در فنآوری و علم اطلاعات است فلذا بیتهای کوانتومی که از این به بعد آنها را کیوبیت خواهیم نامید یکی از پایههای اساسی Q.C. است. در واقع کیوبیت یک شیء ریاضی با خصوصیتی معین است به بیان دقیقتر یک کیوبیت عبارت از یک بردار واحد در فضای ضرب داخلی دو بعدی است که میتوانیم آنرا به صورت
{10> 11>} نمایش دهیم. همواره علاقمند هستیم این مفهوم ریاضی را با یک خاصیت فیزیکی قابل لمس نماییم :
فرض کنیم S یک کمیت دوبعدی از یک سیستم کوانتومی با حالتهای متعامد 01> و 11> باشد که این حالتها میتوانند پایههای طبیعی بسط دهنده این سیستم باشند آنگاه یک کیوبیت عبارت است از حالت کوانتومی 1Ø> که :
راههای زیادی برای حقیقت بخشیدن به مفهوم فوق وجود دارد میتوان حالت 10> را حالت پایه الکترون در اتم هیدروژن و 11> را اولین حالت برانگیخته در نظر گرفت و یا یک سیستم اسپینی که دو حالت اسپین بالا را 10> و اسپین پایین را با 11> نمایش دهیم
تفاوت اساسی بین کلاسیکی و بیت کوانتومی در آن است که یک بیت کلاسیکی یا در حالت 10> است و یا در حالت 11> در حالی که یک کیوبیت میتواند هر بر هم نهی خطی از حالتهای 10> و 11> را بپذیرد بنابراین میتواند در تعداد غیر قابل شمارشی از حالتها قرار داشته باشد. مفهوم این جمله آن است که ظاهراً میتوان اطلاعات فوقالعاده زیادی حتی به صورت نامحدود در یک بیت کوانتومی با انتخاب مطالب α و β جای داد اما عملاً ثابت شده است که بیت کوانتومی میتواند فقط در برخی حالتهای محدود قرار داشته باشد مثلاً یک کیوبیت TRINE کیوبیتی است که فقط یکی از سه حالت
و و یا را به خود بگیرد.
میتوانیم حالت 1Ø> را با استفاده از نمایش هندسی کره بلوخ (Bloch sphere) مناسبتر بنویسیم چون همانگونه که در شکل آمده میتوانیم 2-1 را به صورت زیر بنویسیم :
(2)
که در آن ، ، اعداد حقیقی هستند. عامل فازی مشاهدهپذیر فیزیکی نیست و لذا میتوان آنرا حذف کرد و لذا :
2-2 : اندازهگیری کیوبیت ها : qubit measuerment
یکی از مشکلات کیوبیتها این است که تمامی آنچه که وارد یک کیوبیت میشود، لزوماً همان خارج نمیشود. درکل ، برای یک حالت نامعین از یک کیوبیت تک قابل تشخیص نیست و آن توسط یک اندازهگیری تصویری کاملاً امکانپذیر نیست. فیزیک کوانتومی قواعد دقیقی مبنی بر چگونگی استخراج اطلاعات استخراج اطلاعات از یک حالت کوانتومی ناشناس دهد. خروجی هر اندازهگیری تصویری از یک کیلوبیت ، باید با عبارت کلاسیکی فرمولبندی شود. دقیقتر، میتوان از هر اندازهگیری تصویری یک کیلوبیت، فقط یک بیت کلاسیکی از اطلاعات را تهیه کرد. بنابراین با وجود اینکه یک ارتباطی بین حالتهای کوانتومی ممکن از یک کیوبیت منفرد وجود دارد، ولی این حالتها نمیتوانند از همدیگر تشخیص داده شوند. هیچ اندازهگیری نمی تواند بیشتر ازیک بیت از اطلاعات را از دوکیوبیت داده شده، استخراج بکند. ازدیدگاه اطلاعات، از یک کیوبیت میتوان توسط یک اندازهگیری تصویری دقیق، همان مقدار از اطلاعات کلاسیکی را به اندازه یک بیت کلاسیکی دریافت کرد، حقی دیگر به طور نامحدودی بسیاری از حالتهای بالقوه را داشته باشد.
2-3 : تحول کیوبیت (Qubit evolution) :
هر تحول کوانتومی یک کیوبیت یا هر عمل کوانتومی روی یک کیوبیت توسط یک ماتریس کیانی معین میشود :
(4)
که هر حالت کوانتومی را به حالت تبدیل میکند.
بعنوان مثال، تحول داده شده توسط ماتریس هادامارد (Hadamard)
(5)
که چرخش هادامارد نامیده میشود، حالتهای >10 ، >11 ، >10 و >1 را بصورت زیر تبدیل میکند :
که درآن تبدیل یافته هادامارد حالتهای پایه هستند.
همچنین تبدیل هادامارد را میتوان به صورت نگاشتی ازحالتهای پایه نوشت :
(7)
پایة >}17 ، > 10{ = پایة استاندارد یا پایه محاسباتی نامیده میشود، پایههای دوتایی یا پایههای هادامارد و یا پایههای فوریه نامیده میشود. میتوان دید که با بکاربردن H میتوانیم بین پایههای استاندارد و پایههای دوتایی ارتباط برقرار کنیم(معادلات 2-6). از تعریف H واضح است که H2=I . همچنین پایههایی را میتوان در نظر گرفت که پایههای قطبش نامیده میشوند وتوسط 8 تعریف میشوند :
(8)
که از اهمیت خاصی برخوردارند.
اگرحالتهای 0>1 ، 11> نسبت به حالتهای پایه استاندارد اندازهگیری شوند. هر دو خروجی – 0 و 1- را با احتمال یکسان 2/1 بدست میآیند. عمل H روی حالتهای پایه استاندارد را میتوان همانند پرتاب یک سکه در نظر گرفت. مثلاً اگر روی شیر سکه به طرف ناظر باشد احتمال اینکه پس از پرتاب شیر یا خط بیاید 2/1 است.
2-4 : ثبتکنندههای کوانتومی (Quantum Registers)
برای معرفی ثبتکنندههای کوانتومی مناسب است با ثبت کننده دوکیوبیتی شروع کنیم.
2-4-1 : ثبتکننده دو کیوبیتی
حاصلضرب تانسوری دوکیوبیت را یک ثبتکنندة دو کیوبیتی مینامیم. فضای هیلبرت متناظر با آن H4 میباشد.
معمولاً پایههای استاندارد در فضایH4 بصورت زیر نمایش داده میشوند :
(9)
بنابراین فرم عمومی یک ثبتکننده دو کیوبیتی برابر است با :
(10)
اندازهگیری ثبتکنندههای دوکیوبیتی :
اندازهگیری حالت نسبت به پایههای استاندارد ، خروجیهای دوبیتی ij را با احتمال بدست میدهد و منجر به فرو ریزش به حالت ij> میشود.
اغلب لازم است که فقط یک کیوبیت را اندازه بگیریم. این مطلب میتواند برای استفاده مشاهده پذیر انجام بگیرد :
درمورد کیوبیت اول
در مورد کیوبیت دوم
که ، 1و0 = I زیر فضای استاندارد با بردارهای ، زیر فضای استاندارد با بردارهای i>} ، i>10{ نامیده میشود.
بنابراین اگر کیوبیت اول اندازهگیری شود، خروجی حاصل بیتO با احتمال خواهد بود. و حالت پس از اندازهگیری عبارتست از :
(11)
توجه کنید که حالت پس از تصویر شدن بهنجار شده است. به روشی مشابه آنچه گذشت میتوانیم خروجی 1 را با اندازهگیری کیوبیت دوم با احتمال و حالت مربوطه بدست بیاوریم.
تحول کوانتومی دو کیوبیتی :
از تبدیلات یکانی که روی حالتهای دوکیوبیتی اثر میکنند تبدیل زیر از اهمیت ویژهای برخوردار است :
(12)
که نمایش ماتریسی آن بصورت زیر میباشد.
(13)
ماتریس XOR نگاشتی همانند گیت Controlled Not یا به اختصار CNOT را ایجاد میکند.
2-4-2 : ثبتکنندة n- کیوبیتی :
براحتی می توان ثبتکنندههای –nکیوبیتی را از تعمیم ثبتکنندة 2- کیوبیتی تعریف کرد :
برای ثبتکنندههای –n کیوبیتی در فضای هیلبوت n2- بعدسی کار میکنیم که مجموعه زیر بردارهای پایه این فضا میباشند.
(14)
بردارهای i> 1 را بردارهای استاندارد یا پایههای محاسباتی مینامیم.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 12 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلود با لینک مستقیم
دانلود مقاله عناصر و اصطلاحات و مدارهای کوانتومی