فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق کاربرد ریاضیات در زندگی روزمره

اختصاصی از فی لوو دانلود تحقیق کاربرد ریاضیات در زندگی روزمره دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کاربرد ریاضیات در زندگی روزمره


دانلود تحقیق کاربرد ریاضیات در زندگی روزمره

 

تعداد صفحات : 31 صفحه        -       

قالب بندی :  word         

 

 

 

مقدمه :

ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.

 

کاربرد ریاضیات در زندگی روزمره

امروزه در وضعیتی زندگی می کنیم که باید آن را دست کم تناقض آمیز خواند. ریاضیات نه تنها ابزاری بی بدیل در شکل گیری دقت و استدلال است ، بلکه نیروی شهود ، قدرت تخیل و روحیه ی نقاد را پرو بال می دهد ؛ ریاضیات همچنین زبانی مشترک بین ملت ها و عنصری پر قدرت در فرهنگ است. اما علاوه بر اینها ، به کمک رابطه ی دو جانبه ی کنش ها و واکنش ها با سایر علوم ، ریاضیات در تکوین مفاهیم و بکارگیری اشیا و موضوع های زندگی روزمره ی ما ، نقشی روز افزون ایفا می کند. و اما به طور عام باید گفت اکثریت شهروندان ما که غالباً معنای ریاضیات را از دست داده اند ، نسبت به واقعیت این امر کاملاً ناآگاهند. گاهی عداه ای ، از جمله برخی از مسوولان بلند پایه ، با لحنی بی پروا فخر فروشانه اقرار می کنند که « از ریاضی هیچ نمی دانند » یا « نمره ی ریاضی آنها صفر است » و یا آنکه مفید بودن ریاضی را انکار می کنند.

برای این تناقض و ادراک نا بسامان ، می توان توضیحاتی آورد که شاید ماهیت خاص ریاضیات توجیه شود. ریاضیات مشتمل بر نظامی از دانش است که اگر چه از ارتباط با سایر علوم و با دنیای واقعی تغذیه می شود ، ولی خود نیز به تنهایی به تقویت خویش می پردازد ؛ نظریه های ریاضی نه تنها همدیگر را نابود نمی کنند ، بلکه هر یک بر روی دیگری ساخته می شود . در جهت عکس ، هر چند تعداد فراوانی از پژوهشگران ریاضی پیش از هر چیز مجذوب جنبه ی روشنفکری و حتی زیبایی شناسی رشته ی خود شده اند ، گاهی می بینیم که کاربردهای غیر مترقبه ای هم خودنمایی می کنند . البته با آنکه کاربردها به غنی سازی پژوهش کمک می نمایند، اما نمی توانند به تنهایی آن را هدایت کنند.

تعادل ظریفی که به این ترتیب بین سازه های گسترش داخلی و خارجی وجود دارد ، باید با تمام قدرت حفظ شود. هر نیرویی که بخواهد فعالیت یا پژوهش ریاضی را فقط با کاربردهای بالقوه ی آن مشخص کند ، مانند آن است که خواسته باشد این فعالیت و پژوهش را از هستی ساقط کند. از سوی دیگر ، بر خلاف آنچه که در ایالات متحده ی آمریکا و اتحاد جماهیر شوروی دیدیم ، اختصاص امتیاز بیشتر به اصل موضوعی سازی و بررسی ساختارها و پویایی داخلی ریاضیات ، همانند آنچه در دهه ی 1940 برای ریاضیات فرانسه اتفاق افتاد ، و چندین دهه پس از آن نیز ادامه یافت ، موجب شد که گسترش ریاضیات کاربردی به تاخیر افتد. سازه های پیشرفت ، غالب اوقات در مرزهای دانش مورد نظرند.

 


دانلود با لینک مستقیم


دانلود تحقیق کاربرد ریاضیات در زندگی روزمره

تحقیق در مورد فلسفه ریاضی یا فلسفه ریاضیات

اختصاصی از فی لوو تحقیق در مورد فلسفه ریاضی یا فلسفه ریاضیات دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد فلسفه ریاضی یا فلسفه ریاضیات


تحقیق در مورد فلسفه ریاضی یا فلسفه ریاضیات

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه15

فلسفه ریاضیات

فلسفه ریاضی یا فلسفه ریاضیات ، شاخه‌ای از فلسفه است که به بنیادهای وجودی ریاضیات می‌پردازد. از جمله پرسش‌ هائی که فلسفه ریاضی ، کوشش در پاسخ به آن دارد این‌ها است:

  • چرا ریاضی ، در توضیح طبیعت موفق است؟
  • وجود داشتن عدد یا دیگر موجودات ریاضی ، به چه معنا است؟
  • گزاره‌های ریاضی به چه معنائی صحیح‌اند و چرا؟(ناظر بر منطق و استدلال ریاضی)

بعضی مسائل موجود در دنیای طبیعی را نمیتوان به سادگی حل نمود ولی زمانیکه وارد دنیای ریاضیات میشویم آن مسئله به سادگی حل شده و وقتیکه نتیجه به دنیای طبیعی منتقل میشود کاملأ منطبق بوده به همین دلیل دنیای ریاضیات به سرعت گسترش یافته و در آن دنیاهای دیگری ایجاد شده است. از جمله دنیای جبر - هندسه - معادلات دیفرانسیل - لاپلاس - انتگرال و ... حال کافیست که شما بتوانید این المانهای دنیای طبیعی را به دنیای ریاضیات وارد نموده و بلعکس نتیجه را به دنیای طبیعی باز گردانید که این عمل معمولأ توسط علم فیزیک انجام میگردد.

در آغاز قرن بیستم سه مکتب فلسفه ریاضی برای پاسخ‌گوئی به این‌گونه پرسش‌ها به وجود آمد. این سه مکتب به نام‌های شهودگرایی و منطق‌گرایی و صورت‌گرایی معروف‌اند.

سرنوشت
هر بحث بستگی به سوالهایی بنیادی دارد که در آن مطرح می شود اینجا که بحث در مورد فلسفه ی ریاضیات است پرسش اساسی ما از ریاضیات درباره ی چیستی آن است
 پیداست مولفی دیگر که در سلسله مراتب قدرت جایگاهش با مولف این متن فرق دارد ممکن است سوال دیگری را بنیادی تر بداند هرچند پیشرفت در این راه به منظور رسیدن به پایان کار نیست بلکه کشف ویژگیهای راه است

ریاضیات چیست ؟

ما این سوال را در مرکز توجه قرار می دهیم وپیرامون آن حرکت می کنیم تا از زوایای  مختلف به آن بنگریم.


دانلود با لینک مستقیم


تحقیق در مورد فلسفه ریاضی یا فلسفه ریاضیات

مقاله در مورد رابطه ریاضیات و هنر

اختصاصی از فی لوو مقاله در مورد رابطه ریاضیات و هنر دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد رابطه ریاضیات و هنر


مقاله در مورد رابطه ریاضیات و هنر

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه11

فهرست مطالب

ارتباط هنر و ریاضی :

 

ریاضیات و رابطه آن با هنر :

 

جایگاه هنر در درس ریاضی :

 


زیبایی شناسی در درس ریاضی :

 

رابطه ریاضیات و هنر
مقدمه:

اهمیت فوق العاده ای که ریاضیات ، در جامعه ی امروزی و در فعالیت گوناگون ترین تخصص ها دارد، بر کسی پوشیده نیست . باوجود این ، خیلی زیاد نیستند کسانی که علاقمند به ریاضیات باشند. البته تنها کسانی که کار و فعالیتشان به ریاضیات مربوط می شود ، علاقمند به ریاضیات نیستندبلکه کم هم نیستند مشتاقانی که ساعت های فراغت خود را ، با ریاضیات می گذرانند. همه ی این ها چه حرفه ای ها و چه علاقمندان ، نه تنها فایده و اهمیت ریاضیات را می شناسند بلکه در ضمن ، به ریاضیات شوق می ورزند و می توانند زیبایی و ظرافتی که در مسأله ها ، قضیه ها و روش های ریاضی وجود دارد را احساس کنند .

احساس و منطق را با هیچ نیرویی نمی توان از هم جدا کرد و هر جدایی ساختگی منجر به تحریف هر دوی آنها می شود . هر احساس اگر احساس واقعی باشد، خردمندانه است چراکه احساس واقعی نمی تواند جدا از اندیشه و خرد آدمی پدید آید
.

 


دانلود با لینک مستقیم


مقاله در مورد رابطه ریاضیات و هنر

مقاله در مورد ریاضیات مهندسی

اختصاصی از فی لوو مقاله در مورد ریاضیات مهندسی دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد ریاضیات مهندسی


مقاله در مورد ریاضیات مهندسی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه46

ریاضیات مهندسی:

فصل اول: بررسی های فوریه:

مقدمه: تفکیک یک تابع به چند جزء مختلف و یا بسط آن به یک سری گسترده از توابع دارای بورد کاربردی مختلف در ریاضی و فیزیک است، یکی از این موارد بسط توابع برحسب مجموعه ای از توابع هارمونیک مثلثاتی با فرکانسها و دامنه ای مختلف است. در این فصل ضمن آشنایی قدم به قدم به اصول این روش با کاربردهای حاصل از آن نیز آشنا می شویم.

1-1- توابع متناوب: اگر شکل تابع در فواصل منظم تکرار شود آنرا تناوب گوئیم.

 

 

در مورد یک تابع متناوب می توان نوشت:

(1) f (x+T) = f(x)

در این رابطه f تابعی از متغیر x و دوره تناوب T می باشد.

براساس این تعریف ملاحظه می شود که اگر g,f توبام هم پریود باشند، تابعی که به صورت زیر تعریف می شود نیز با آنها هم پریود است.

(2) h = af + bg

sin و cos از جمله توابع متناوبند.

Sin x                     2

Cos x

مثال: دوره تناوب Sin x + 3 Cos x چقدر است؟

 Sin x                  2P

Cos x           P

بنابراین دوره تناوب تابع مذکور 2P می باشد.

به این ترتیب دوره تناوب مجموعه ای توابع به صورت زیر برابر 2P  خواهد بود.

(3)f(x)=a.+a1cosx+a2cos2x+…+anconx+b.+b1sinx+b2Sin2x+…+bnSinx

در بخشهای بعد دیده می شود که می توان برای تابعی با دوره تناوب 2P ضمن محاسبه ظرائب a1 تا a2 یک سری مثلثاتی مثل رابطه (3) پیدا کرد


دانلود با لینک مستقیم


مقاله در مورد ریاضیات مهندسی

مقاله در مورد تاریخچه مختصر ریاضیات

اختصاصی از فی لوو مقاله در مورد تاریخچه مختصر ریاضیات دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد تاریخچه مختصر ریاضیات


مقاله در مورد تاریخچه مختصر ریاضیات

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه10


انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که

مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش

دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این

دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن

ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود. سومریها که تمدنشان مربوط به حدود

هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن

 بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و

تمدن آشوری را پدید آوردند. نخستین دانشمند معروف یونانی طالس ملطلی (639- 548 ق. م.) است

که در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیک، نجوم و هندسه

دانست. در اوایل قرن ششم ق. م. فیثاغورث (572-500 ق. م.) از اهالی ساموس یونان کم کم ریاضیات

را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از

زنون فیلسوف و ریاضیدان یونانی که در 490 ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم

 قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا

است که مبانی هندسه جدید ما را تشکیل می دهند. در قرن چهارم قبل از میلاد افلاطون در باغ

آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعد از او نیز همچنان برپا ماند. این فیلسوف بزرگ به تکمیل

منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضی دان معاصر وی ادوکس

با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی

حفر کرده بود هیچ چیز غیرعادی ندارد و می توان مانند سایر اعداد قواعد حساب را در مورد آنها به کار برد.

در قرن دوم ق. م. نام تنها ریاضی دانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان


دانلود با لینک مستقیم


مقاله در مورد تاریخچه مختصر ریاضیات