فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی لوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق کامل درمورد کاویتاسیون

اختصاصی از فی لوو دانلود تحقیق کامل درمورد کاویتاسیون دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد کاویتاسیون


دانلود تحقیق کامل درمورد کاویتاسیون

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 47
فهرست و توضیحات:

- معرفی پدیده کاویتاسیون

- تعریف و اساس فرآیند کاویتاسیون 

- تقسیم‎بندی کاویتاسیون

- اثرها و اهمیت کاویتاسیون

- اندیکس کاویتاسیون

- شکل‎گیری کاویتاسیون

- روش‎های مطالعه کاویتاسیون

- روش‎های تشخیص کاویتاسیون

- روش‎های سنتی برای کاهش خسارات کاویتاسیون

- عوامل مؤثر در خسارت ناشی از کاویتاسیون بر روی سطح

 

معرفی پدیده کاویتاسیون

تاریخچه

نیوتن اولین فردی بود که بطور تصادفی در سال 1754 در حین آزمایش عدسیهای محدب به پدیده کاویتاسیون و تشکیل حباب در مایعات برخورد کرد ولی نتوانست علت آن را شناسایی کند. او مشاهدات خود را چنین بیان کرده است:

«در مایع بین عدسیها، حبابهایی به شکل هوا بوجود آمده و رنگهایی شبیه به هم تولید کرده که این حبابها نمی‎تواند از جنس هوا باشد زیرا مایع قبلاً هوا زدایی شده است.»

نیوتن تشخیص داد که این عمل نتیجه بیرون آمدن هوا در اثر کاهش فشار است و حبابها دوباره نمی‎تواننددر مایع حل شوند و در نتیجه پدیده کاویتاسیون را باعث خواهند شد.

مهندسان کشتی‎سازی در قرن نوزدهم به شکل عجیبی برخورد کردند. آن این بود که پیچهای توربینها که به آب دریا در تماس بودند بعد از مدتی باز می‎شدند، آنها نتوانستند هیچ دلیل قانع کننده‎ای  برای این عمل پیدا کنند.

رینولدز در سال 1875 این مشکل را حل کرد، او یکسری آزمایشات کلاسیک روی یک مدل به طول 30 اینچ انجام داد که دارای پیچ‎هایی به طول 2 اینچ با فنر قابل تنظیم بودند. او دریافت که وقتی طول پیچها زیاد شود عمل باز شدن رخ نمی‎دهد. او اظهار داشت که هوای وروید پشت تیغه پره باعث کاهش قرت پروانه می‎شود. خودش یک مورد معروف را که شاهکاری در صنعت کشتی‎سازی است، طراحی کرد که سرعت آن برابر 27 کره بود.

اولین مشاهدات مکتوبی که در توربینهای بخار ثبت شده توسط ‎Parson است و در گزارشاتش چنین آورده است:

«لرزش پروانه بیشتر و راندمان آن کمتر از حدی است که محاسبات نشان می‎دهد، از بررسی روی سطوح تیغه‎ها معلوم شد که حبابهایی در پشت تیغه توربین آب را پاره می‎کند، جنس حبابها از هوا و بخار آب نیست و قسمت اعظم قدرت موتور صرف تشکیل و نگهداشتن آنها به جای راندن کشتی می‎شود.»

‎Parson Barnaby و ‎Thornycroft Barnaby مقاله‎هایی در این زمینه نوشته‎اند و پدیده مذکور را شرح داده‎اند و نتیجه‎گیری کرده‎اند که وقتی فشار اطراف تیغه‎ها از یک حد ویژه‎ای پایین‎تر رود حفره‎ها و ابرهای حبابی در پروانه‎ها بوجود می‎آید. ‎Thronycroft Barnaby اولین کسانی بودند که مقالات خود از لغت کاویتاسیون ‎(cavitation) استفاده کردند. آنها اظهار داشته‎اند که  وقتی فشار منفی کمتر از ‎psi75/6 شود این اتفاق رخ می‎دهد.

برای آزمایش و مشاهده کاویتاسیون، تجربیات ‎Parson و تلاشهای ‎Turbinia آنها را به ساخت و طراحی یک ماهی تابه سربسته محتوی آب که یک گوشه آن باز بود رهنمون کرد. این آزمایش مقدمه‎ایی برای طراحی و ساخت اولین تونل کاویتاسیون در سال 1895 شد. این وسیله هنوز در دپارتمان آرشیتک دریایی و کشتی‎سازی دانشگاه ‎Newcastle upon Tyne وجود دارد. این وسیله شامل مدار بسته بیضی شکلی از یک لوله مسی عمود بر سطح مقطع پروانه بود که بطور افقی به بالای عضو چرخاننده یک ماشین بخارکوچک متصل بود و سپس به یک موتور الکتریکی منتهی می‎شد. عکس‎برداری بر روی پنجره‎ای که در بالای آن یک لامپ کمانی شکل قرار گرفته بود صورت می‎گرفت و بدین طریق مشاهده کاویتاسیون امکان‎پذیر بود.

‎Parson در سال 1910 یک تونل کاویتاسیون بزرگ در ‎Newcastle upon Tyne ساخت که برای تست پروانه‎هایی به قطر 12 اینچ در یک مدار بسته با طول مسیر جریان 66 فوت، قطر لوله اصلی 36 اینچ و سطح مقطعی به عرص 25/2 فوت و عمق 5/2 فوت بکار می‎رفت که دارای پنجره شیشه‎ای قابل نمایش از یک نورافکن بزرگ و سرعت عکس‎برداری 30000/1 ثانیه بود.

‎Hutton تنها فردی است که تاریخچه دقیق و شاخه‎های کاویتاسیون را با چندین مرجع کمیاب از محققان مربوطه تهیه کرده است.

تعریف و اساس فرآیند کاویتاسیون

به تشکیل و فعالیت حباب در مایع کاویتاسیون گویند. وقتی مایع در فشار ثابت، به اندازه کافی گرم شود یا هنگامی که در دمای ثابت، متوسط فشار استاتیکی یا دینامیکی‎اش به اندازه کافی کاهش یابد، حبابهایی از بخار و یا گاز بخار تشکیل می‎شود بطوری که حتی با چشم هم گاهی اوقات قابل مشاهده است. با کاهش فشار یا افزایش دما، اگر حباب تنها شامل گاز باشد ممکن است با نفوذ گازهای غیرمحلول ازمایع به حباب، منبسط شود. ولی اگر حباب بیشتر از بخ ار پر شده باشد، اگر به اندازه کافی کاهش فشار محیط دردمای ثابت صورت بگیرد، یک انفجار تبخیری از سمت داخل حباب اتفاق می‎افتد که به این پدیده کاویتاسیون می‎گویند. در حالی که برای حباب پر شده از بخار، بالا رفتن دما باعث رشد پیوسته آن خواهد شد که آن را جوشش می‎نامند.

رشد حبابها در اثر نفوذ گاز به نام ‎Degassing معروف است. در صورتی که این رشد اگر به علت کاهش فشار دینامیکی باشد آن را کاویتاسیون گازی می‎نامند. می‎توان کاویتاسیون را بر حسب رشد حباب به چهار دسته کلی زیر تقسیم کرد:

1- کاویتاسیون گازی ‎(gaseous cavitation): حباب محتوی گاز که به دلیل افزایش دما یا کاهش فشار رشد یافته است.

2- ‎کاویتاسیون تبخیری ‎(vaporous cavitation): حباب پر شده از بخار که سبب رشد آن کاهش فشار است.

3- گاز زدایی ‎(Degassing): حباب محتوی گاز که سبب رشد آن نفوذ گازهای غیرمحلول در مایع است.

4- جوشش ‎(boiling): حباب محتوی بخار که علت رشد آن بالا رفتن دما به قدری کافی است.

اگر از دیدگاه تغییر فشار دینامیکی موضوع را بررسی کنیم آنچه که دارای اهمیت است ارتباط بالا رفتن یا پایین آمدن فشار برای رشد حباب است. زیرا اگر رشد حباب بدلیل افزایش فشار داخل آن باشد می‎توان از رشد آن جلوگیری کرده و گاز درون آن را در مایع حل و یا بخار داخل آن را کندانس کرد. در هم شکستن ‎(collapse)برای حباب محتوی بخار و کمی گاز بیشتر اتفاق می‎افتد و کمتر در حالتی که حجم گاز نسبت به بخار زیادتر باشد روی می‎دهد. بطور کلی کاویتاسیون شامل تمام اتفاقاتی است ه در مسیر تشکیل حباب و انبساط آن تا در هم شکستن (collapse) حبابها روی می‎دهد. در حالتی که در فرایند جوشش معمولی حبابها بطور پیوسته رشد می‎کنند. شدت در هم شکستن (collapse) با رشد و بهم پیوستگی مهم است و در بالا به آن اشاره شد می‎توان به صورت زیر خلاصه شود:

1- کاویتاسیون پدیده‎ای است مخصوص مایعات و در جامدات و گازها بوجود نمی‎آید.

2- کاویتاسیون نتیجه کاهش فشار در مایع است. بنابراین به جرأت می‎توان گفت که اگر قدر مطلق مینیمم فشار کنترل شود، این پدیده کنترل خواهد شد. بدین معنی که از خواص فیزیکی و شرایط مایع می‎توان یک فشار بحرانی را محاسبه کرد که اگر فشار مایع مدت زمان کافی زیر آن فشار بحرانی قرار بگیرد کاویتاسیون تولید خواهد شد در غیر این صورت هیچگاه کاویتاسیون رخ نخواهد داد.

3- کاویتاسیون با ظاهر شدن و یا ن اپدید شدن حفره‎ها (حبابها) در مایع مرتبط است. اگر لغت ‎Cavity به معنای حفره یا حباب و لغت ‎Hole به معنی سوراخ را در دیکشنری وبستر ‎(Webster) مقایسه کنیم به این نتیجه می‎رسیم که ‎Cavity یک لغت معنی‎دار نسبت به ‎Hole است و آن دلالت به یک فضای خالی فعال دارد. در بسیاری از موارد لغت کاویتاسیون مناسب است، زیرا آن به مفهوم فعال بودن اهمیت می‎دهد. به آسانی می‎توان دریافت که اگر حفره‎ها واقعاً خالی باشند، حجم نمی‎تواند به عنوان یک قسمت فعال در این پیده فیزیکی نقش بازی کند. بنابراین همه آثار قابل مشاهده کاویتاسیون باید برای رفتار مایع قابل تعقیب و جستجو باشد. به هر حال اندازه و حجم حفره در مدت عمر آن نقش کمی را ایفا می‎کند مگر در زمان نزدیک به شروع و پایان سیکل حباب که پارامترهای مورد نظر نقش بسزایی را بعهده دارند، زیرا ابعاد حباب میکروسکپی و یا حتی زیر – میکروسکپی ‎(Sub-Microscopic) است.

4- کاویتاسیون یک پیده دینامیکی است. بنابراین به رشد و در هم شکستن ‎(collapse) حبابها کاملاً ارتباط دارد.

برخی از موارد مهم دیگری را در ذیل یادآوری می‎کنیم.

الف- هیچ اشاره‎ای به حرکت یا ساکن بودن مایع نشده است،‌ بنابراین ممکن است این مفهوم را برساند که کاویتاسیون در هر حالتی امکان وقوع دارد.

ب- اشاره‎ای مبنی بر  محل روی دادن کاویتاسیون، مثلاً در محدوده مرزهای جامه یا خارج آن نشده است. بنابراین به نظر می‎رسد که کاویتاسیون هم در داخل مایع و هم روی مرزهای جامد اتفاق بیفتد.

ج- بحث بالا مربوط به دینامیک رفتار حباب است. بطور ضمنی بین هیدرودینامیک رفتار حباب و آثار آن مانند خوردگی کاویتاسیون تفاوت قائل شده است .

توضیحات فوق که در مورد سیکل تبخیر ‎- در هم شکستن ‎(collapse) است، بر مبنای تشخیص کاویتاسیون می‎باشد. در بسیاری از موارد این پدیده به طور کامل با سیکل ساده دینامیک حبابهای کوچک مشخص شده است. در مراحل پیشرفته بعد از شروع، تولید هیدرودینامیکی کاویتاسیون ممکن است خیلی پیچیده‎تر از بحث بالا باشد.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد کاویتاسیون

دانلود تحقیق کامل درمورد نجوم و اخترفیزیک

اختصاصی از فی لوو دانلود تحقیق کامل درمورد نجوم و اخترفیزیک دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد نجوم و اخترفیزیک


دانلود تحقیق کامل درمورد نجوم و اخترفیزیک

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 24

 

نجوم و اخترفیزیک

آشنایی با کیهان شناسی 

 کیهانشناسی علم بررسی تاریخ کیهان به عنوان یک کل است و هم ساختار و هم تکامل آن را بررسی می کند. در کیهانشناسی فرض می شود که در فاصله های بسیار زیاد، کیهان از هر مکانی که به آن نگاه شود یک شکل و متقارن به نظر می رسد، و در هر جهتی که به آن نگاه شود هم به یک شکل می باشد ( به بیان ریاضی تر، کیهان ایزوتروپیک است.) این فرضیات، اصول کیهانشناسی نامیده شده اند

جست‌وجوی اجرامی شگفت انگیزتر از سیاهچاله‌ها

دانشمندان وجود دسته‌ای جدید از سیاهچاله‌ها را پیش بینی کرده‌اند که به دلیل سرعت بسیار زیاد چرخش به دور خود افق رویداد ندارند.

به گزارش سرویس علمی خبرگزاری دانشجویان ایران(ایسنا)، سیاهچاله‌ها هم پیش از این در دسته اجرامی بسیار ناشناخته و رازآمیز قرار داشتند. تصوری که از این اجرام وجود دارد، این گونه است که جسمی بسیار کوچک جرمی معادل جرم چندین خورشید را در نقطه‌ای فشرده کرده است.

اما موضوع این خبر کشف جرمی شگفت انگیزتر از سیاهچاله‌ها است.

نظریه «تکینگی بدون پوشش» (naked singularity) حاکی از آن است که سیاهچاله آنقدر سریع به دور خود می‌گردد که در نهایت با فقدان افق رویداد مواجه می‌شود.

سیاهچاله‌ها زمانی شکل می‌گیرند که ماده‌ ستاره‌ای بزرگ بر روی خود فرو بریزد و در این حین، فشار لازم به طرف خارج برای خنثی کردن نیروی گرانشی که به طرف داخل وارد می‌شود، وجود نداشته باشد. از این رو فشار گرانش به سایر نیروهای داخلی غلبه می‌کند و سیاهچاله تا بینهایت در خود فرو می‌ریزد.

در این صورت نیروی گرانشی به قدری زیاد می‌شود که حتی نور نیز نمی‌تواند از آن بگریزد. در نهایت سیاهچاله در پوششی تاریک از خودش احاطه می‌شود که ما آن را افق رویداد می‌نامیم. اجرام و تابش‌ها هنگام رد شدن از افق رویداد ناگزیر به سمت سیاهچاله کشیده می‌شوند. به همین دلیل ما آن ها را نمی‌بینیم و سیاه می‌نامیم.

به نوشته نجوم، تمام سیاهچاله‌های کشف شده تا‌کنون، دارای چرخش به دور خود بوده‌اند. گاهی آنقدر زیاد که به بیش از هزار دور در ثانیه می‌رسید؛ اما در این نظریه جدید، اگر سیاهچاله‌ای را بیابید که سرعت گردش به دور خودش بسیار زیاد باشد، در آن صورت مقدار حرکت زاویه‌یی چرخشش بر نیروی گرانش حاصل از جرمش غلبه می‌کند و می تواند افق رویداد را کاهش دهد و یا از بین ببرد و سیاهچاله را بدون پوشش کند؛ اما سیاهچاله‌ای با 10 برابر جرم خورشید، به سرعت چرخشی بیش از چند هزار دور بر ثانیه نیاز دارد.

مطابق با نتایج تحقیقات دانشگاه‌های «دوک»(Duke) و «کمبریج»(Cambridge)، جرمی با چنین مشخصاتی را می‌توان در لنزهای گرانشی کشف کرد.

به گزارش ایسنا، لنز گرانشی قسمتی از فضا است که در آن جسمی با جرم زیاد مانند سیاهچاله وجود دارد و با توجه به نیروی گرانشی که دارد مانند یک عدسی طبیعی عمل می‌کند و نورهای رسیده از فواصل دور را خمیده و در نهایت کانونی می‌کند.

اگر نتایج این تحقیقات درست باشد، اخترشناسان می‌توانند چنین اجرامی را که در نظریه جدید پیش بینی شده ثبت و شناسایی کنند.

پیچنده فضایی (1)

تصور کنید اگر راندن در یک جاده کوهستانی برای شخصی مثلاً هشت ساعت طول بکشد، شاید یافتن یک تونل در آنجا، زمان لازم برای پیمودن این مسیر را به ده دقیقه کاهش دهد. پس اگر کسی با دوستانش قرار بگذارد که این مسیر را برود و سپس به آنها اطلاع دهد که به مقصد رسیده و آنها هم از داستان آن تونل فرضی آگاهی نداشته باشند، شاید بتواند برای دوستانش چنین وانمود کند که راه هشت ساعته را چنان تند پیموده که ده دقیقه ای رسیده!

اما مگر میشود که در هر شرایطی فاصله فیزیکی را چنان کوتاه کرد که زودتر به مقصد برسیم؟ مگر میشود در هر شرایطی میانبر پیدا کرد؟ پاسخ دانش فیزیک به این پرسش آری است.

برای شکافتن بهتر موضوع بهتر است کمی درباره نیروی گرانش (جاذبه) بگوییم. در افسانه ها میگویند که نیوتن با افتادن سیبی به سرش قانون گرانش را کشف کرد. او فکر کرد که چرا سیب بالا نمیرود و پایین میاید؟ او پی برد که اگر هر جسمی را با سرعت به اندازه کافی به هوا پرتاب کنیم، با شتاب ثابتی و در یک مسیر راست به زمین برمیگردد. پس میتوان گفت که کشش زمین و جسم دلیل این رویداد است. از آن پس دانش فیزیک پیشرفت کرد و دانشمندان فهمیدند که حرکت سیارات به دور خورشید هم از همین گونه است. گرچه به خاطر جرم زیاد سیارات و خورشید و مسافت زیاد میان آنها، خورشید نمیتواند آنها را در یک مسیر راست به سوی خود بکشد و آنها روی خورشید نمی افتند. پس با اینکه گرانش همان گرانش است و نیروی تازه ای در کار نیست، اما در اینجا کمی پیچیده تر خود را نشان میدهد و اثر گذاری آن از حرکت ساده و سقوط راست اجسام بر روی زمین، به حرکت پیچیده و چرخشی سیارات گرد خورشید با سرعتها و دوره های تناوب و ... متفاوت تبدیل شده. پس میتوان اینگونه نتیجه گیری کرد که در شرایط پیچیده تر، گرانش میتواند اثر گذاریهای پیچیده تری را به بار دهد.

در اینجای داستان لازم است نگاه خود را از دستاورد نیوتن به دستاورد انیشتین تغییر دهیم. نظریه نسبیت عام انیشتین گرانش نیوتن را کامل کرد و یک برداشت متفاوت از آنرا به دست داد. نظریه انیشتین گفت که هنگام سخن از نیروی گرانش، چیزی چیزی را به سوی خود نمیکشد، بلکه جرم ها فضا را به گونه ای خم میکنند که حرکت اجسام ناشی از نیروی گرانش (آن گونه که ما می بینیم) در واقع سقوط آزاد آنها در یک فضای خمیده است. پس زمین سیب را به سوی خود نمیکشد، بلکه نیروی گرانش کره زمین فضای پیرامون این سیاره را جوری خم کرده که هر جسمی بسته به ویژگی هایش (جرم، سرعت، ...) در این فضای خمیده حرکت میکند. خورشید هم طوری فضای منظومه شمسی را خم کرده که هر سیاره ناگزیر باید گرد آن بچرخد. برای تجسم بهتر به سوراخ چاه حمام نگاه کنید که چطور آب و کفها را به سوی خودش میکشد، طوری که اگر هر چیزی همراه آنها باشد (مثلاً یک سوسک!) به گرد سوراخ چاه میچرخد و میچرخد و سرانجام به درون سوراخ میریزد. خورشید نیز چنین میکند، اما خوشبختانه سیارات به این زودیها به آن نزدیک نمیشوند و تنها پس از میلیاردها سال است که ما هم مانند کفهای درون حمام به درون خورشید کشیده میشویم.

به هر حال، میخواستم این را بگویم که نیروی گرانش میتواند حرکتهای پیچیده ای را نتیجه دهد، حرکت راست و حرکت چرخشی. همه چیز به سیستم مورد مطالعه بستگی دارد؛ اینکه جرمها چه اندازه اند و چه ویژگیهایی دارند (سرعت، شتاب، اندازه حرکت، اندازه حرکت زاویه ای، ...) و چه مسافتی از هم دارند و مانند اینها. بر پایه نسبیت عام انیشتین، هر چه سیستم مورد مطالعه پیچیده تر باشد، میتواند فضای پیرامونش را پیچیده تر خم کند. اما آیا میتوان طوری پیچیدگی را بالا برد که خمیدگی فضای اطراف به کم شدن فاصله میان دو مکان بیانجامد؟ در مثال جاده کوهستانی با زدن تونل از دل کوه، میشد که بگوییم مسیر (بهتر بگوییم: مسیر موثر و نه مسیر واقعی) را کوتاه کرده ایم؛ انگار که جاده کوهستانی جوری خم شده که آغاز و پایانش همان آغاز و پایان تونل شده است. پس برای زودتر رسیدن باید مسیر دلخواه را طوری خم کنیم که ابتدا و انتهایش در یک مسیر فشرده شده و کوتاه شده قرار بگیرد. اگر بتوانیم تا این اندازه پیچیده کار کنیم و فضا را خمیده در بیاوریم، خواهیم توانست مسیر را کوتاه کنیم و سرعت موثر پیمودن در آنرا افزایش دهیم.

معادلات نسبیت عام انیشتین میگویند که چنین کاری شدنی است و اگر شما مسیر مورد نظر و ویژگی های خمش آنرا به معادلات بدهید، معادلات به شما ویژگی های آن سامانه از جرمها را میدهند.

دانشمندان سالها روی این موضوع کار کرده اند و به پاسخ هایی از معادلات میدان گرانش نسبیت عام دست یافته اند که میتوانند کوتاه کردن مسیر را برای ما به بار دهند.

دو دسته از پاسخها که بیشترین کار روی آنها انجام پذیرفته، متریکهای کرمچاله گذرپذیر و حامل پیچشی میباشند. در مدل یک کرمچاله گذرپذیر استاتیک و کروی-متقارن، میتوان با گذر از گلوگاه کرمچاله، از یک دهانه در یک فضای مجانبی-تخت، به یک فضای مجانبی-تخت دیگر رفت که در فاصله ی به اندازه بسنده دوری قرار دارد. اینگونه که بر میاید، محدودیتی در برد این سامانه نیست! پس هر دو جا در یک جهان یا دو جهان را میتوان به هم پیوند داد. اما بررسیهای بیشتر نشان داده اند که چنین هندسه زمختی، نیاز به مقادیر زمختی از ماده شگفت یا به زبان فنی تر: ماده ناقض شرط انرژی میانگین پوچ، را به همراه میاورد.

پیوستگی مولفه های متریک چنان است که گریزی برای رسیدن به یک ساختار خوشرفتار نیست. چنانکه اگر اندازه انرژی کاهش یابد، کاهش شعاع گلوگاه را به بار میدهد؛ یا اندازه فاصله میان دهانه تا گلوگاه را به مقادیر حدی میل میدهد. پس باید رهیافت رقیق سازی هندسه را برگزید. یعنی روی هر مولفه از متریک خام نخستین چنان کار میکنیم که - در دامنه ی توانش - به تمرکززدایی چگالی انرژی در فضازمان پیرامونش کمک کند.

یکی از بهترین گزینه ها رفتن به سوی بی تقارنی در اسکلت متریک است، به هدف آنکه به جز مولفه های قطر تانسور ماده-انرژی (که چهار تا هستند)، هر شانزده مولفه این تانسور باری از ماده شگفت همبسته را به دوش بگیرند و فشار ضریب کلان اندازه انرژی بجای چهار مولفه، در پشت شانزده مولفه پخش شود. پیچیدگی ریاضی چنین رهیافتی بسیار بالاست و بی تردید نیرومندترین راهکار پرداختن به آن، به کار بردن تقریبهای عددی و مانند سازیهای رایانه ای است. بزرگترین گامی که در این راه تاکنون برداشته شده، رفتن از هندسه متقارن-کروی به هندسه متقارن-محوری بوده است.

دیگر گزینه دینامیک سازی هندسه است. یعنی بگذاریم هندسه در زمان جریان بیابد و تمرکز زمخت ماده شگفت "جاری" شود. گرچه در جهان واقعی هم رودخانه زمان همیشه به جلو در پیش میرود.

گزینه دیگر افزودن چرخش به توابع ریخت و جابجایی به سرخ در متریک است که بخشی از انرژی همبسته را به خود جذب میکند و آنرا کاهش میدهد.

و همچنین گزینه دیگر افزودن بار الکتریکی به متریک است که با برپایی بر هم کنش میان میدانهای الکترومغناطیسی و گرانشی میتواند بر هندسه اثرگذار باشد. با فناوری کنونی، این کاراترین راهکار رقیق سازی هندسه کرمچاله است.

همه گزینه های بالا در جبهه ای به نام کار روی سمت چپ معادلات میدان نسبیت عام و کار روی هندسه ی بهتر جای میگیرند. اما جبهه دومی هم در کار است که همان کار روی سمت راست معادلات میدان و کار روی انرژی بیشتر نام دارد.

پیچنده فضایی (2)

اینجاست که اهمیت مهندسی فضازمان (Spacetime Engineering) روشن میشود که در شرایطی که فیزیک قضیه به مرزهای خود رسیده و توان پیش رفتن بیشتر را در آینده ای نزدیک برای خود نمیبیند، مهندسی دانسته ها و داشته های کنونی، میتواند رهیافتهایی در چهارچوب دانش را باز کند که نوید این را میدهند که میتوان با تردستی، بازده تولید ماده شگفت را از سطح کوانتمی به سطح کلاسیکی برساند

بر پایه عدم قطعیت مکانیک کوانتمی، نمیتوان گفت که در خلا کامل انرژی پایه فضازمان هیچ است، بلکه پس از کوانتیده کردن تابع انرژی، در می یابیم که نوسانگر مربوطه در خلا بر شمرده شده که آنرا نقطه صفر هم مینامند، دارای مقدار است. پس قرارداد میکنیم که انرژی کمتر از این مقدار را انرژی منفی بنامیم.

اما این انرژی دارای سرشتی کوانتمی میباشد، و مهار آن کاری دشوار است. همچنین تا رسیدن به یک نظریه گرانش کوانتمی فراگیر، توضیح درخوری از رفتار کف کوانتمی فضازمان را نداریم. نمیدانیم که فضازمان ماهیتی پیوسته دارد (نسبیت کلاسیک) یا از واحدهای گسسته ساخته شده (نظریه میدان کوانتمی) یا از واحدهایی یک بعدی و مرتعش (نظریه ریسمان) و یا سنگ بناهایی دوبعدی و رویه گونه که مانند لوله کشی و غشابندی می مانند (نظریه های ابرریسمان). بنابراین بهتر است که به آزمایشها بسنده کرد که رفتارهایی سرراست را گزارش میدهند و بررسی فضازمان را بسیار ساده تر میکنند؛ گرچه باید پذیرفت که دقت رهیافت نظری را در این شیوه نداریم، اما در بیشتر پیشرفتها راهبرد نظریه را گزارشات تجربی رفتار طبیعت در اندازه های کوانتمی و کهکشانی به دست داده اند و فیزیک کار را پی ریخته اند. پس رهیافت بررسی آزمایشها بیشتر مهندسی و در سطح است تا فیزیکی و در عمق، و حتی برخی آنرا "مهندسی کوانتمی" نامیده اند، اما در پایه ی داستان تفاوتی را نمیسازند، گرچه هر رهیافت جایگاه خود را دارد و پیشرفتهای نظریه بسیار مهم هستند.

از میان پدیده های به آزمایش درآمده که در برخی حالتها برخوردن به انرژی منفی را در سیستم مورد بررسی دارند، دو پدیده اثر کازیمیر و خلا فشرده بیشترین احتمال دستیابی به اندازه های ماکروسکوپیکی ماده شگفت را در خود دارند. جالب آنکه از این دو پدیده در نخستین مقاله های پدید آورندگان فیزیک کرمچاله در سال 1988 نیز نام برده شده است.

اثر کازیمیر را ده ها سال است که فیزیکدانها میشناختند، اما تا تایید آزمایشگاهی آن در دهه نود، چیزی بیش از یک حالت ویژه از نوسانگر های کوانتمی نگریسته نمیشد. در این باره از شما میخواهم که به یک مقاله بسیار خوب نگاهی بیاندازید:

هنوز نیز با اینکه این بارزترین گزینه دیدن اثرات انرژی نقطه صفر خلا میباشد، بسیاری نمیپذیرند بتوان با یک اثر ذاتاً کوانتمی به ساختارهایی ماکروسکوپیکی از فضازمان پیچانده شده (کرمچاله، حامل پیچشی، لوله کراسنیکف، و هر گونه پیچنده فضایی) رسید.

اکنون پرسش اینست که چگونه میتوان یک کرمچاله گذرپذیر را در آزمایشگاه ساخت؟ و پاسخ آنست که باید انرژی بایسته آنرا فراهم کرد. یعنی باید ماده شگفت را تولید کرد که دارای چگالی انرژی کمتر از چگالی انرژی خلا در فضازمان تخت در دمای صفر مطلق و در شرایط خلا ایده آل (= شمار ذرات محیط آزمایش برابر صفر) میباشد.

 دو فاجعه در یک کهکشان

ابرنواخترها پدیده هایی نادر اند که در هر 25 تا 100 سال یکبار در کهکشان رخ می دهند. به همبن دلیل سازمان فضایی ناسا از کشف چنین پدیده ای بسیار حیرت انگیز شد، این واقعه در حالی رخ داد که ماهواره سوئیفت توانست دو ابرنواختر با فاصله 16 روز از انفجار را در یک کهکشان ردیابی کند.

تاکنون اخترشناسان ابرنواختری به اینگونه؛ در کهکشان MCG +05-43-16 مشاهده نکرده بودند، که ناگهان انفجاری مهیب رخ می دهد. این دو ابر نواختر با نام های SN 2007ck و SN 2007co شناخته می شوند. این انفجارها شش هفته گذشته در این کهکشان کم نور واقع در صورت فلکی جاثی و با فاصله ای معادل 380 میلیون سال نوری از ما رخ دادند.

اخترشناسان بر این باورند که این پدیده بسیار نادر و متمایز است، SN 2007ck ابرنواختری نوع II است و هنگامی رخ می دهد که ستاره بسیار پرجرم تر از خورشید است در این هنگام ستاره شروع به بیرون ریزی شدید ماده و در نهایت انفجاری مهیب را به وجود می آورد و واقعه ای عظیم پدیدار می شود سیاهچاله، ستاره نوترونی یا دمیدن پوسته های گازی ستاره به دیگر نواحی فضا.

ابرنواختر بعدی، یعنی، SN 2007ck از نوع Ia است و در حالی رخ داده که ماده کوتوله ای سفید توسط همدمی غیر قابل دید ربوده شده است تا جایی که ستاره توانایی نگهداری هیچ ماده ای را بر خود نداشته سپس انفجاری مهیب و پرصدا و حجیم رخ داده است.

در حقیقت این پدیده تصادفی و نادر در دو بازه زمانی کم سبب پر نور تر شدن کهکشان به اندازه دهها هزار بار بیشتر از آنچه بوده شده است.

روشی نوین برای اندازه گیری جرم سیاه چاله ها

نیکولای شاپوشنیکو و لو تیتار چوک،دو اختر فیزیک دان مرکز پرواز های فضایی گدارد ناسا به ابتکاری نوین در زمینه اندازه گیری جرم سیه چاله ها نائل آمدند.

شاید در ابتدا عجیب به نظر آید، اما یکی از مهم ترین و مشکل ترین مسائلی که دانشمندان همواره با آن روبرو هستند تعیین جرم اجرام آسمانی است.نمونه های فراوانی از سیستم هایی دوتایی که در آن دو ستاره به دور یکدیگر در گردشند مورد بررسی قرار گرفته و جرم دقیق آنها محاسبه می گردد.در این بین تعیین جرم سیاه چاله ها فرایندی بسیار پیچیده است زیرا این اجرام غیر قابل مشاهده هستند.

 اما اختر فیزیکدانان کار آزموده در ابتکاری بی سابقه، روش نوینی برای حل این مسئله ابداع نمودند. در این روش با سنجش میزان وسعت قرص بر افزایشی در سیاه چاله جرم دقیق آن تعیین می گردد. (قرص بر افزایشی یک صفحه دایره ای گردان است که از مواد به دور سیاه چاله تشکیل می شود. این مواد که در اطراف سیاه چاله قرار دارند به مرور وارد آن شده و به عبارت دیگر بلعیده می شوند.)

از آنجا که این مواد می توانند بسیار سریعتر از بلعیده شدن توسط سیاه چاله متراکم گردند ،به هم فشرده شده و فوق العاده گرم می شوند.علاوه بر این، در طی فرایند گرم شدن امواجی را در طیف اشعه ایکش گسیل می کنند که توسط اخترشناسان در زمین دریافت می شود.

دانشمندان به این نکته پی برده اند که رابطه مستقیمی بین سیاه چاله و اندازه قرص بر افزایشی اطراف آن وجود دارد.به عقیده اخترشناسان، متراکم شدن گاز های داغ قرص بر افزایشی با افزایش جرم سیاه چاله همراه خواهد بود. .بدین ترتیب هرچه قدر که سیاه چاله پرجرم تر باشد، میزان تراکم مواد اطراف آن و در نتیجه اندازه قرص برافزایشی وسیع تر خواهد بود.

 این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید  


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد نجوم و اخترفیزیک

دانلود تحقیق درمورد جامعه شناسی ارتباطات

اختصاصی از فی لوو دانلود تحقیق درمورد جامعه شناسی ارتباطات دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق درمورد جامعه شناسی ارتباطات


دانلود تحقیق درمورد جامعه شناسی ارتباطات

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 15
فهرست و توضیحات:

تاثیر رسانه ها بر روابط خانوادگی

تحول گروه

پیوندعاطفی

آسیبهای خانواده

فضاهای الکترونیکی و فردگرایی

فرد گرائی جمع گرائی

 

تاثیر رسانه ها بر روابط خانوادگی

خانواده ، یک گروه پویا ست. گروه تنها مجموعه ای ازافرادنیست ، بلکه نشان دهنده نوع وشکل روابط میان اعضای آن نیز هست. گروه را می توان مجموعه ای ازافراد دانست که با برقراری ارتباط با یکدیگر و انجام کار وفعالیت مشترک ، هدف مشترکی را نیز دنبال می کنند (بورمان ، 1969، به نقل از فرهنگی ،1382). درتقسیم بندی گروه ها ، خانواده را می توان جزو گروه های کوچک به حساب آورد که با اندکی تفاوت ، ازقوانین گروههای بزرگ تبعیت می کنند. ازمهمترین قواعد این گروهها تحولی بودن آنهاست.

تحول گروه

گروه به عنوان یک نظام جمعی، همواره درحال تحول وتغییر می باشد. خانواده نیزکم وبیش ازآغاز شکل گیری خود از مراحلی گذر می کند. گذرازاین مراحل درجهت هدفمندی نظام (سیستم) می باشد. هدف اصلی گروه خانواده ، رسیدن به سطحی است که بتواند ثبات و تداوم خودراحفظ نماید. این هدف را می توان با عنوان انسجام خانواده نام برد که به آن گروه ، شخصیتی پایدار می دهد. به عبارت دیگر، انسجام گروه را می توان به عنوان سطح بالای گروه (خانواده ) مطرح نمود. وقتی اعضای گروه بتوانند نیازهای همدیگر را درجهت هدف فردی وجمعی خود تامین نمایند ، درواقع موجد انسجام گروه می شوند. به عبارتی انسجام گروه به عنوان سطح بالای تحول ، درگرو مشارکت ، هدفمندی و عملکرد متناسب با تامین تعامل نیازهای اعضای گروه می باشد. براین اساس ، انسجام خانواده را می توان به عنوان مهمترین مولفه پویایی وحفظ آن قلمداد نمود.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق درمورد جامعه شناسی ارتباطات

دانلود تحقیق درمورد تغذیه مناسب برای کودکان دبستانی

اختصاصی از فی لوو دانلود تحقیق درمورد تغذیه مناسب برای کودکان دبستانی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق درمورد تغذیه مناسب برای کودکان دبستانی


دانلود تحقیق درمورد تغذیه مناسب برای کودکان دبستانی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 6
فهرست و توضیحات:

تغذیه مناسب برای کودکان دبستانی

آن‌چه که باید در خانواده رعایت شو

تهیهء سفرهء مغذی

کسب وزن مناسب

تقویت استخوان‌ها

کودکان و آشپزخانه

صبحانه را جدی بگیرید

توصیه هایی برای لقمه مدرسه

تغذیه مناسب برای کودکان دبستانی

یافتن دوستان جدید و فعالیت‌های ورزشی می‌تواند نوع تغذیهء کودک را تحت تاثیر قرار دهد. با وجود این والدین باید مواد غذایی ضروری برای رشد فرزندانشان را تامین کنند. توصیهء متخصصان برای انجام این امر مهم به شما این فرصت را می‌دهد که علاوه بر تامین مواد لازم برای رشد کودک به فرزندانتان روش تغذیهء سالم را نیز بیاموزید.

آن‌چه که باید در خانواده رعایت شود

فرزند شما در سن مدرسه بیش از هر زمان دیگر از خانه دور می‌ماند که بخشی از آن را در مدرسه و بخشی را با همسالان خود سپری می‌کند. آموزگاران، مربیان و همسالان می‌توانند بر سلیقهء غذایی فرزند شما تاثیر بگذارند ولی شما باید همچنان بر نحوهء صحیح تغذیهء فرزند خود نظارت داشته باشید و بهترین الگوی تغذیهء او قرار بگیرید.

به یاد داشته باشید که بسیاری از عادات تغذیه‌ای زندگی در سنین شش تا 12 سالگی شکل می‌گیرد. به نظر «تارا اوسترو»، متخصص ارشد تغذیه در نیویورک، والدین باید کوشش کنند آن‌چه را که از نظر تغذیه و فعالیت‌های روزمره برای فرزند خود در طول زندگی ضروری می‌دانند در این سنین خود اجرا کنند تا کودکشان شاهد انجام آن‌ها باشد. دکتر نیکلاس استاد طب اطفال در هوستون می‌گوید: تعلیم براساس الگو در این سن بسیار مهم است و اثرش بیش از آن است که والدین بخواهند به اصرار، کودک را وادار به خوردن غذاهای مناسب یا نوشیدن شیر کنند. والدین خود باید این مواد را در حضور کودکان با اشتیاق مصرف کنند. در حین غذا خوردن ضمن آن‌که با کودک خود آمرانه برخورد می‌کنید از خشونت و سختگیری نیز بپرهیزید.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق درمورد تغذیه مناسب برای کودکان دبستانی

دانلود تحقیق درمورد اسلحه انفرادی XM8

اختصاصی از فی لوو دانلود تحقیق درمورد اسلحه انفرادی XM8 دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق درمورد اسلحه انفرادی XM8


دانلود تحقیق درمورد اسلحه انفرادی XM8

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 5
فهرست و توضیحات:

اسلحه انفرادی XM8

G3

تاریخچه ژ۳ در ایران

تاریخچه جهانی ژ۳

مشخصات

سازمان و خدمه

 

اسلحه انفرادی XM8

سلاح((XM8)) که شامل چهار گونه اصلی :لوله استاندارد,لوله کوتاه, نوعی برای تیر اندازان ماهر و بالاخره مدل کاملاخودکار را در برمی گیرد .

طول لوله ۲۲ تا ۵۰ سانتی متر متفاوت بوده و برای تمام آنها فشنگهای ۵۶/۵ میلیمتری استاندارد ناتو از نوع M۸۵۵ در نظر گرفته شده است.
سرعت مرمی هنگام خروج از لوله ۲۲ سانتی متری معادل ۳۵/۲۶۳ کیلومتر بر ساعت,موقع 
خروج از لوله ۵۰ سانتی متری حدود ۲/۳۹۲ کیلومتر بر ساعت وزمان خروج از لوله ۳۲ سانتی متری برابر ۲۵/۲۹۶ کیلومتر بر ساعت است.قدرت آتش این اسلحه ۷۰۰ تا ۸۲۵ گلوله در دقیقه
می باشد. این اسلحه یکی از جدیدترین سلاح های ساخت ایالات متحده است که در سال ۲۰۰۶ به نیروهای متقاضی تحویل داده میشود.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق درمورد اسلحه انفرادی XM8